Англійська мова «навчально-методичний посібник з реферування та анотування текстів науково-технічної літератури» icon

Англійська мова «навчально-методичний посібник з реферування та анотування текстів науково-технічної літератури»

Скачати 376.89 Kb.
НазваАнглійська мова «навчально-методичний посібник з реферування та анотування текстів науково-технічної літератури»
Розмір376.89 Kb.
ТипНавчально-методичний посібник
1   2   3   4
1. /Методичка Кравченко.docАнглійська мова «навчально-методичний посібник з реферування та анотування текстів науково-технічної літератури»

Email Spam And Blocking

 ONE of the most contentious issues to surface on the Internet in the last few years has to do with what Internet users call "spam." Spam is unsolicited junk email that commercial companies send out, asking you to buy their goods and services. At times it may contain inducements to visit the seller's site. The email usually contains a phone number to call, an address to send money to, or a Web site to visit to buy the goods and services. The term "spam" comes from a Monty Python skit in which every item on a menu contained Spam luncheon meat. It was originally used to refer to unsolicited postings for commercial products or ser­vices on Usenet, especially when they were cross-posted to several newsgroups.

Spam might seem like a minor annoyance, but the truth is, it can cause major problems. Spam floods the Internet with unwanted mail, which can lead to delayed or lost mail. It clogs the Internet pipeline, making other information slower to send. It wastes time for those who have to go through their email boxes deleting unsolicited mail, especially when they pay for their email service by the hour. Additionally, it's fairly common for spammers to hide their real email addresses by forging other peo­ple's names onto the From or Sender header of an email message. So, those people whose names were forged might be the target of angry mail. This makes it difficult for Webmasters and mail administra­tors to filter spam messages by From address or domain name. Sometimes spammers even use other people's servers to deliver their bulk email; in essence, forcing someone else to pay the costs of the spammer's mail delivery. In some ways, spam is not very different from traditional junk mail. Spammers buy or compile massive lists of email addresses, in the same way that junk mailers buy or compile U.S. Postal addresses. The spammer then uses special software to send a solicitation to every person on the list—not uncom­monly, tens of thousands of pieces of email in a single spam mailing. To hide their true identity, spammers forge names onto the headers of email messages, and even "relay" their spam to another mail server on the Internet, so that it is impossible to find out where the mail comes from. Often, a user will request to be taken off the list by replying to email addresses that the spammers provide. However, this verifies the user's address and he or she will get even more spam. A variety of ways have been devised to block spam, including having email filters on email software ignore any mail from known spammers. This doesn't always work well, however, because spammers often change or forge their email addresses. There are also calls for the courts or Congress to take ac­tion. Congress has considered several laws, including one that would ban spam entirely, in the same way that junk faxes were banned several years ago. Until then, try doing an Internet search for Web sites that will help you download and install software to help filter your email and stop spam.

Text 11

Metallurgy is the largest key industry in the economy of Ukraine. Its importance is due to the fact that the machine building and metal-working industries depend on the production of ferrous and non-ferrous metals, and that metal is the main source of engineering materials and an important export article.
The metallurgy sector includes 14 integrated steel making plants, 7 pipe plants, 10 plants producing metallic articles, 16 merchant-coke plants, 17 refractory production plants, 3 ferroalloy plants, 20 non-ferrous metallurgical works, 35 factories reprocessing ferrous and non-ferrous scrap metal, and other enterprises.
Metallurgy in Ukraine has long history. In the 19th century, blast furnaces were in operation and cast iron was smelted in Donetsk and Luhansk. The main factors of development of metallurgy in Ukraine are the proximity of iron and manganese ore deposits, coking coal, and non-metallic materials – limestone, molding sand, and refractory clay. In addition, the dense transport network makes for efficient delivery of raw materials and goods to the plants. There is also a developed system of training the workforce, and a presence of reliable consumer – the machine building industry and other industries that consume large quantities of metal. The main raw material for ferrous metallurgy is iron ore. Ukraine is completely self-sufficient in iron ore, coke, manganese, and various supplementary materials. Kryvy Rih basin is the source of most iron ore (about 90%). It is the world’s largest area of iron ore extraction. From there, iron ore is shipped not only to Ukrainian plants, but also to the countries of Western and Eastern Europe. The total iron ore deposits in Ukraine (categories A, B and C) amount to 27 billion tons. The main area of manganese ore extraction is the Transdnipro manganese-ore basin, an area with unique deposit contents. Both the manganese ore from Transdnipro and Chasiv Yar deposit of refractory clay are well known far beyond Ukraine’s borders. The unique proximity of all the raw materials necessary for the metallurgy industry to each other is the cause of the economic prevalence of the Ukrainian metallurgy industry in the national economy and its significance for the economies of other European countries. Ukraine had been the metallurgy workshop of the former USSR; it used to be the second in the world in steel production, and the fourth in cast iron smelting. In steel production per capita (1059 kg), Ukraine used to be the first in the world. Most of the facilities of the industry are engaged in production of ferrous metals (over 44%) and extraction and enrichment of crude ore (over 30%). The third largest subsector in terms of production assets involved is the by-product-coking industry. There are four iron-ore basins in Ukraine: Kryvy Rih, Kremenchuk, Bilozerske and Kerch basins. There are two manganese ore basins, one in Nikopol and the other in Velyky Tokmak. In addition, there are several non-metallic raw material deposits: fluxing limestone (Donbas, Transdnipro, Crimea), dolomites, and refractory clays. The vast majority of metallurgy enterprises of Ukraine are powerful integrated companies that produce over five million tons of metal per year. The largest of them are Azovstal, Zaporizhstal, and Kryvorizhstal. Three metallurgical regions have developed in Ukraine: Transdnipro, Donetsk, and Transazov. Non-ferrous metallurgy includes ore extraction and enrichment, non-ferrous metal production, and secondary raw material processing. Most prominent in the non-ferrous metallurgy industry is aluminum production, using bauxites, alunites, etc. as raw materials. The availability of resources and the rising needs encourage creation of a large aluminum industry in Ukraine.
Two large aluminum and titanium-magnesium plants are situated in Zaporizhia. The aluminum plant gets its raw materials from Mykolayiv alumina plant, and the titanium-magnesium plant – from Irzhansk. Verkhniodniprovsky mining-and-smelting integrated works manufactures zirconium and titanium articles exported to dozens of countries. The production of magnesium uses the salts of Sivash Gulf. Mykytivka mercury deposit (Donetsk Oblast) is the main production source of this metal. The lead-zinc industry is well developed too – zinc is smelted in Kostiantynivka (Donetsk Oblast). Secondary metal enterprises also belong to non-ferrous metallurgy: the hard alloy works (Torez), the rolled brass and copper mill (Artemivsk), pure metal works, etc. In the future a production of superconducting materials, hard alloys, pure metals, etc. is expected to develop fast.

Text 12


Common engineering metals include aluminium, chromium, copper, iron, magnesium, nickel, titanium and zinc. These are most often used as alloys. Much effort has been placed on understanding the iron-carbon alloy system, which includes steels and cast irons. Plain carbon steels is used in low cost, high strength applications where weight and corrosion are not a problem. Cast irons, including ductile iron are also part of the iron-carbon system. Stainless steel or galvanized steel are used where resistance to corrosion is important. Aluminium alloys and magnesium alloys are used for applications where strength and lightness are required. Copper-nickel alloys (such as Monel) are used in highly corrosive environments and for non-magnetic applications. Nickel-based superalloys like Inconel are used in high temperature applications such as turbochargers, pressure vessel, and heat exchangers. For extremely high temperatures, single crystal alloys are used to minimize creep. In production engineering, metallurgy is concerned with the production of metallic components for use in consumer or engineering products. This involves the production of alloys, the shaping, the heat treatment and the surface treatment of the product. The task of the metallurgist is to achieve balance between material properties such as cost, weight, strength, toughness, hardness, corrosion and fatigue resistance, and performance in temperature extremes. To achieve this goal, the operating environment must be carefully considered. In a saltwater environment, ferrous metals and some aluminium alloys corrode quickly. Metals exposed to cold or cryogenic conditions may endure a ductile to brittle transition and lose their toughness, becoming more brittle and prone to cracking. Metals under continual cyclic loading can suffer from metal fatigue. Metals under constant stress at elevated temperatures can creep.

Text 13

Although printing has been used in Western countries for more than 500 years, the creation of reproduction by mechanical means has a much longer history. Relief printing using stamps to impress designs into soft clay or wax has been known for thousand of years in the Middle East and in other parts of Asia. China was the first country to print with paper, ink and carved wooden blocks, a process called xylography. The invention of paper in China in the 8th century provided a smooth, flexible surface on which to reproduce an image. In this process, a single carved wooden block of text was used to print impressions on whole pages. By the 11th century the Chinese had cut the blocks into individual characters, creating the world’s first movable type. Xylography was also the first printing method used in Europe in the early 1400s. by 1450 Gutenberg’s combination of movable metal type and the printing press had produced Europe’s first typeset book - the Gutenberg Bible. Gutenberg’s process spread quickly to other European nations. Over time the literacy rate gradually rose among the population of Europe. Literature ans scientific and religious texts, once read only by scholars, nobility, and the educated priesthood, were now available to an ever-widening audience.

As the demand for printed books steadily increased, printers had to improve their methods and equipment. They developed metal presses to replace the common wooden press, created stereotype and electrotype plates to make greater numbers of copies, and designed mechanically driven and automatically inked presses to increase printing speed and quality. Not all advances in printing technology came from printers or designers and manufacturers. In 1796 German author Aloysius Senefelder, in his search for an inexpensive means of publishing his own plays, developed the techniques of lithography. Joseph-Nicephore Niepce, a French landowner and inventor, discovered in the 1820s that certain chemical compounds were sensitive to light. His work marked the origins of photogravure and eventually led to the invention of photography and the use of photographic processes to reproduce images. Beginning with the invention of the offset technique in the United States, a series of 20th century innovations made mass production, high speed and economy in printing possible. Automated composition, first developed after the 1920s, gave way to programmed composition in the 1950s. Many of today’s computerized typesetting machines can set 1,000 characters per second. Phototypesetting equipment of the future could conceivably reach speeds of nearly 3,000 characters per second, or about 10,000,000 characters per hour. Inventors also created pressure less printing, which eliminated the need for a printing press. In 1948 two Americans conceived of a type of electrostatic printing in which the colouring agent is not ink but a powder that is sensitive to the pull of an electric charge induced on a plate. This technique gave birth to xerography and the now-familiar copying machines. The various processes developed to duplicate and reproduce documents have been grouped under the name reprography.

Text 14

Gutenberg’s Press.

In the mid-15th century Johannes Gutenberg invented a mechanical way of making books. This was the first example of mass book production. Before the invention of printing, multiple copies of a manuscript had to be made by hand, a laborious task that could take many years. Gutenberg began experimenting with metal typography (letterpress printing) after he had moved from his native town of Mainz to Strassburg around 1430. Knowing that wood-block type involved a great deal of time and expence to reproduce, because it had to be hand carved, Gutenberg concluded that metal type could be reproduced much more quickly once a single mold had been fashioned. When Johannes Gutenberg began building his press in 1436, he was unlikely to have realised that he was giving birth to an art form which would take center stage in the social and industrial revolutions which followed. The invention of the printing press by Johannes Gutenberg in 1440, should be classed with the greatest events in the history of the world. Culture and knowledge, until then considered aristocratic privileges peculiar to certain classes, were popularized by typography. The German printer Johannes Gutenberg is generally credited as being the first European to bring together in about 1450, the two main concepts of modern printing: movable pieces of metal type that could be reused, and a printing press for producing sharp impressions on paper over and over. Until the advent of computerized printing, this fundamental process remained virtually unchanged for five centuries. Gutenberg’s invention spread rapidly after his death in 1468. The names of more than 1000 printers, mostly of Gernam origin, have come down to us from the 15th century. In Italy we find well over 100 German printers, in France 30, in Spain 26. By 1499 print-houses had become established in more than 2500 cities in Europe. Fifteen million books had been flung into a world where scholars would travel miles to visit a library stocked with twenty hand-written volumes. By 1424, Cambridge University library owned only 122 books – each of which had a value equal to a farm or vineyard. The demand for these books was driven by rising literacy amongst the middle class and students in Western Europe. The inventor’s method of printing, from movable type, including the use of metal molds and alloys, a special press, and oil-based inks, allowed for the first time the mass production of printed books. Books produced in this period, between the first work of Johannes Gutenberg in 1450 and the year 1500, are collectively referred to as incunabula. The success of printing meant that books soon became cheaper, and a much larger part of the population could afford them. More than ever before, it enabled people to follow debates and take part in discussions of matters that concerned them. Thus, intellectual life soon was no longer the exclusive domain of church and court, and literacy became a necessity of urban existence. The printing press stoked intellectual fires at the end of the Middle Ages. A great cultural rebirth was inspired by widespread access to classical art and literature. Without inexpensive printing to make books available to a large portion of society, the Renaissance may never have happened. What civilization gained from Gutenberg’s invention is incalculable.































































1   2   3   4


Англійська мова «навчально-методичний посібник з реферування та анотування текстів науково-технічної літератури» iconНавчально-методичний посібник з німецької мови для студентів спеціальностей «Філологія. Мова І література (німецька, англійська)», «Філологія. Переклад», «пмсо. Мова та література (німецька, англійська)
Англійська мова «навчально-методичний посібник з реферування та анотування текстів науково-технічної літератури» iconНавчально-методичний посібник матеріали до моніторингу якості знань з курсів «історія української літератури (Х хх століття)»
Навчально-методичний посібник «Матеріали до моніторингу якості знань з курсів “Історія української літератури (Х – ХХ століття)»,...
Англійська мова «навчально-методичний посібник з реферування та анотування текстів науково-технічної літератури» iconНавчально-методичний посібник для середніх загальноосвітніх шкіл з поглибленим вивченням біології
Планування роботи дошкільного навчального закладу. Навчально-методичний посібник
Англійська мова «навчально-методичний посібник з реферування та анотування текстів науково-технічної літератури» iconНавчально-методичний план для заочного відділення спеціальність «Маркетинг»
Англійська мова «навчально-методичний посібник з реферування та анотування текстів науково-технічної літератури» iconНавчально-методичний посібник для студентів Київ "Ленвіт" 2010
П 25 Навчально- й науково-дослідна робота студентів-філологів (реферат, курсова, випускна робота з української мови та методики її...
Англійська мова «навчально-методичний посібник з реферування та анотування текстів науково-технічної літератури» iconНавчально-методичний посібник для студентів професійно-кваліфікаційного рівня "бакалавр" за напрямом підготовки 0902
З-38 Технологічні основи машинобудування: Навчально-методичний посібник. – Суми: Вид-во СумДУ, 2004. – 98 с
Англійська мова «навчально-методичний посібник з реферування та анотування текстів науково-технічної літератури» iconНавчально-методичний посібник для викладачів, кураторів академічних груп, студентів педагогічних спеціальностей
Збірник фахових текстів із завданнями з курсу “Іноземна мова (за професійним спрямуванням)”: методичне забезпечення контролю навчальних...
Англійська мова «навчально-методичний посібник з реферування та анотування текстів науково-технічної літератури» iconСписок рекомендованої літератури
Аксіологічні основи психологічної культури особистості: навчально-методичний посібник / В. В. Рибалка. – К.: Апн україни, Ін-т пед...
Англійська мова «навчально-методичний посібник з реферування та анотування текстів науково-технічної літератури» iconНавчально-методичний посібник Міністерство освіти і науки України
Л22 Економічна історія. Навчально-методичний посібник. – Тернопіль: Економічна думка, 2006. – 68 с
Англійська мова «навчально-методичний посібник з реферування та анотування текстів науково-технічної літератури» icon3216 Збірник текстів та вправ до них з дисципліни «Англійська мова»
Збірник текстів та вправ до них з дисципліни «Англійська мова» / укладачі: Л. П. Ярмак, О. Р. Гладченко. – Суми : Сумський державний...
Англійська мова «навчально-методичний посібник з реферування та анотування текстів науково-технічної літератури» iconНавчально-методичний посібник для слухачів Інституту підготовки професійних суддів Одеса 2011 Рекомендовано до видання
Призначення покарання: Навчально-методичний посібник / Авт кол.; Відп ред. В. О. Туляков. – О.:, 2011. с
Додайте кнопку на своєму сайті:

База даних захищена авторським правом ©zavantag.com 2000-2013
При копіюванні матеріалу обов'язкове зазначення активного посилання відкритою для індексації.
звернутися до адміністрації