Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» icon

Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність»




НазваКонспект лекцій для студентів спеціальності 080303 «динаміка І міцність»
Сторінка1/4
Дата12.07.2012
Розмір0.54 Mb.
ТипКонспект
  1   2   3   4


МіНіСТЕРСТВО ОСВіТИ і НАУКИ УКРАЇНИ

Сумський державний університет


ГЕРМОМЕХАНІКА”

КОНСПЕКТ ЛЕКЦІЙ


ДЛЯ СТУДЕНТІВ СПЕЦІАЛЬНОСТІ

8.080303 «ДИНАМІКА І МІЦНІСТЬ»

ДЕННОЇ ФОРМИ НАВЧАННЯ


Розділ “Автоматичні врівноважувальні пристрої як безконтактні ущільнення”


Суми

Видавництво СумДУ

2008

«Гермомеханіка»: конспект лекцій. Розділ “Автоматичні врівноважувальні пристрої як безконтактні ущільнення” / Укладачі:
В.А. Марцинковський, С.М. Гудков, С.О.Міщенко. – Суми: Вид-во СумДУ, 2008. – 78 с.


Кафедра загальної механіки та динаміки машин





Зміст



Вступ.........................................................................................................

С.

4

Функції врівноважуючих пристроїв та вимоги до них….……………

5

Оцінка осьової сили, діючої на відцентрове колесо…………………

10

Способи врівноваження осьових сил………………………………......

16

Гідростатична сила у торцевому зазорі з малою конусністю………...

27

Статичний розрахунок врівноважуючого пристрою. Рівняння рівноваги ротора………………………………………..…………........

Статична характеристика системи……………………………………..


40

41

Деформації врівноважуючого диска…….……………………………..

43

Обчислення витрат…………………………………………………......

45

Послідовність статичного розрахунку………………………………..

46

Розрахунок характеристик надійності………………………………..

50

Виведення рівняння динаміки системи. Рівняння осьових коливань ротора……………………………………………………………………


58

Рівняння руху рідини…………………………………………………..

59

Рівняння балансу витрат……………………………………………....

63

Рівняння регулятора……………………………………………………

65

Рівняння системи………………………………………………………

66

Амплітудна частотна характеристика………………………………...

67

Аналіз динамічної стійкості…………………………………………...

69

Список літератури…………………………………………………….

77



Вступ


У даному конспекті лекцій розглядаються конструкції, теорія і розрахунки автоматичних пристроїв, урівноважуючих осьові сили, діючі на ротор багатоступеневого відцентрового насоса.

Такі пристрої складаються з гідростатичних радіально – упорних підшипників і безконтактних ущільнень із саморегульованим торцевим зазором. Пристрої становлять системи автоматичного керування, тому у даному конспекті використовуються знання студентів із курсів “Теорія автоматичного керування”, “Гідроаеромеханіка”, “Теорія коливань”, “Теорія стійкості”, “Теорія пружності”. У свою чергу, даний конспект лекцій можна використовувати як допоміжний матеріал при вивченні перелічених дисциплін.

Зміст лекцій ґрунтується на матеріалах монографій [19, 20].


^ Функції врівноважуючих пристроїв та вимоги до них


Робочі колеса одностороннього входу багатоступеневих відцентрових машин (рис. 1) для забезпечення підведення рідини до наступної ступені, доводиться виконувати так, що внутрішній радіус R0 основного диска менший за внутрішній радіус R1 покривного диска. Тому тиск на бокові поверхні колеса розподіляється по-різному, та на колесо діє неврівноважена осьова сила тиску, яка спрямована у бік вхідної воронки. Величина сили пропорційна тиску Н, який, у свою чергу, пропорційний квадрату частоти обертання ? та квадрату зовнішнього радіуса колеса R2.

У сучасних високонапірних відцентрових насосах сумарна осьова сила, що діє на всі колеса, вимірюється десятками тонн. Урівноваження таких сил становить великі труднощі та вимагає значних витрат потужності. Наприклад, тільки об'ємні втрати у врівноважуючих пристроях деяких насосів досягають 10% їх подачі, тому вдосконалення методів урівноваження осьових сил є істотним резервом підвищення як надійності, так і економічності великих відцентрових машин.

Осьові сили, що діють на ротор, сприймаються автоматичними врівноважуючими пристроями (рис. 2), які одночасно виконують функції упорного гідростатичного підшипника і комбінованого кінцевого ущільнення з саморегульованим торцевим зазором. Обидві ці функції однаково важливі, тому є всі підстави розглядати врівноважуючий пристрій як варіант безконтактного ущільнення.

Надалі будемо досліджувати тільки безконтактні торцеві ущільнення із саморегульованим зазором. Робота таких ущільнень базується на тому, що осьова сила, яка розкриває торцеву пару, залежить від величини зазору. Ущільнення трьох основних типів з саморегульованим торцевим зазором показані на рисунку 2 і розглянуті нижче. Відмінність їх у тому, що у першому варіанті (врівноважуючий пристрій) аксіально рухомий елемент (розвантажувальний диск) обертається, а опорна поверхня жорстко зв'язана зі статором, завдяки чому ущільнення одночасно виконує функцію упорного підшипника. У двох наступних конструкціях аксіально рухомі елементи є статорними деталями. Якщо їх жорсткість в осьовому напрямі зробити достатньо великою, то і вони можуть виконувати функції упорного гідростатичного підшипника. З цієї точки зору врівноважувальний пристрій - граничний випадок абсолютно жорсткого аксіально рухомого елемента, а ущільнення (рис. 2 б, в) -абсолютно жорсткого у осьовому напрямі обертового елемента (ротора). Між цими крайніми варіантами є широкі можливості для створення комбінованих упорно-ущільнюючих пристроїв.

Різні модифікації варіантів, які зображенні на рисунку 2, не мають принципових відмінностей, аналіз яких може бути виконаний загальним методом (див. нижче).

Основними елементами врівноважуючих пристроїв (рис. 1) є жорстко пов'язаний з ротором розвантажувальний диск ^ 1, циліндрова щілина А з постійним гідравлічним опором та щілина торця Б, опір якої змінюється у результаті зміни зазору z при осьових зміщеннях ротора.



Рисунок 1 - Врівноважуючий пристрій ротора відцентрової

машини



а) б) в)

Рисунок 2 - Схеми торцевих ущільнень із саморегульованим зазором:

а - врівноважуючий пристрій; б - гідростатичне ущільнення із внутрішніми дроселями; в - гідростатичне ущільнення з імпульсним урівноваженням аксіально-рухомої втулки


У граничному випадку, коли торцевий зазор дорівнює нулю та витоків немає, тиск р2 у камері V досягає найбільшого значення та дорівнює тиску перед циліндровою щілиною А. При цьому ?=∆р2/∆р=1 (∆р = р1 – р3; ∆р2 = р2, - р3; ∆р1 = р1 – р2) та на розвантажувальний диск діє максимальна осьова сила F. У іншому крайньому випадку, коли торцевий зазор великий, майже весь перепад тиску дроселюється на циліндровій щілині, та тиск у камері падає до р2 = р3. При цьому ? = 0, та осьова сила зменшується до нуля.

У робочих умовах, якщо, наприклад, сила ^ Т з будь-якої причини збільшується, ротор зміщується вліво до того часу, поки тиск р2 зросте завдяки зменшенню зазору z настільки, щоб відновилася рівність F=Т.

У сталому стані кожному значенню сили Т відповідає певний зазор z, при якому F=T. Залежність сили F від торцевого зазору становить статичну характеристику (рис. 3).

При проектуванні врівноважуючих пристроїв прагнуть, з одного боку, звести до мінімуму об'ємні втрати, з іншого - не допустити у процесі роботи при можливих змінах осьової сили надмірного зменшення торцевого зазору, оскільки це може привести до задирання. Задовольнити обидві вимоги можна за умови, що статична характеристика має достатню крутість, коли навіть великі зміни сили викликають малі зміни зазору.




а) б) в) г)

Рисунок 3 - Статичні характеристики врівноважувальних пристроїв:

а - звичайна конструкція; б -упорний підшипник;
в - розвантажувальний поршень; г – гідроп’ята з елементом розвантажувального поршня


Крутість статичної характеристики (гідростатична жорсткість) визначається головним чином коефіцієнтом ?. У граничних випадках, коли ? = 1 і F, характеристика стає горизонтальною (рис. 3 б) коли
? = 0, характеристика зображує вертикальну пряму (рис. 3 в). Перша характеристика належить до упорного підшипника: урівноваження здійснюється без осьових зміщень ротора та витоків рідини. Проте через те, що осьова сила може змінюватися у широких межах, такі упорні підшипники виявляються важко навантаженими, та забезпечити їх нормальну роботу дуже важко. Друга характеристика належить до розвантажувального поршня, який широко застосовують у компресорних машинах для урівноваження порівняно невеликих сил. При цьому осьове положення ротора повинне обов'язково фіксуватися додатковим упорним підшипником. Для підвищення гідростатичної жорсткості на втулці циліндрового дроселя виконують відповідні розподільні золотники подібно до того, як це роблять в гідростатичних підшипниках.

Об’ємні втрати через систему розвантаження визначаються її загальним гідравлічним опором. За умов технології не можна домогтися значного збільшення опору торцевої щілини, оскільки при зменшенні її зазору та збільшенні ширини l= r3-r2 підвищується небезпека задирання. Простіше збільшувати довжину циліндрової щілини, проте при цьому збільшуються осьові розміри. У насосах для гарячих рідин виконують додаткові циліндрові щілини (рис. 1). Такий спосіб зниження об’ємних втрат приводить до зменшення коефіцієнта ?, тобто до зменшення крутості статичної характеристики, але запобігає можливості скипання води у камері після розвантажувального диска, оскільки р34. Питання конструювання врівноважуючих пристроїв детально висвітлені в літературних джерелах [1, 2].

Як і будь-яка система автоматичного регулювання, система урівноваження осьової сили повинна мати певні динамічні якості. Тому далі разом із статичним розрахунком наводиться дослідження динамічної стійкості системи ротор - розвантажувальний пристрій і побудова амплітудних частотних характеристик.

Розвантажувальний пристрій (рис. 1) є системою автоматичного регулювання, для якої осьове положення ротора (координата z) є регульованою величиною, осьова сила Т і тиск р1, р4 – зовнішні навантаження, а ротор – об’єкт регулювання.

У деяких машинах для запобігання задиранню п’яти у процесі розгону та вибігу виконують віджимні пристрої ^ 2, які зміщують ротор у бік нагнітання, збільшуючи зазор. Таким пристроєм є пружний елемент з коефіцієнтом жорсткості k і зусиллям попереднього стиснення k∆Fk (∆ - попередня деформація пружин). Це зусилля можна розглядати як настройку. З урахуванням зроблених зауважень побудована функціональна схема (рис. 4 б), що відповідає розрахунковій схемі (рис. 4 а) врівноважуючого пристрою з елементом розвантажувального поршня S1, і додатковим циліндровим дроселем l3.



а) б)

Рисунок 4 - Розрахункова схема комбінованого врівноважуючого пристрою: а – розрахункова; б – функціональна; ? – регулятор;
?? – об’єкт регулювання


Потрібно відмітити, що за принципом роботи розвантажувальний пристрій еквівалентний серводвигуну з елементом сопло-заслінка (рис. 5), який використовується як регулятор положення точки А.


^ Оцінка осьової сили, що діє на відцентрове колесо


У керівництвах з конструювання та розрахунку насосів [1-3] осьова сила обчислюється у припущенні, що рідина у обох пазухах ступені обертається як тверде тіло з частотою , що дорівнює половині частоти обертання ротора . При цьому припущенні розподіл тиску по радіусах дисків колеса (рис. 5) описується параболічним законом


, (1)


а осьова сила визначається інтегруванням тиску по кільцевій поверхні, обмеженій радіусами та і збіжні з площею вхідної воронки колеса:

.




Рисунок 5 - Серводвигун з елементом сопло-заслінка як аналог врівноважуючого пристрою

Якщо вважати, що, то після інтегрування одержимо


. (2)

Для багатоступеневих насосів з числом ступенів z сумарна осьова сила, діюча на ротор, може бути записана у вигляді


.


З теорії подібності лопатевих насосів випливає, що тиск, який розвивається робочим колесом, досить точно виражається квадратичною залежністю від частоти обертання, тому


; , (3)


де В - коефіцієнт пропорційності, визначуваний гідравлічним розрахунком або експериментально, на підставі (2):

.




Рисунок 6 - Розподіл тиску на бічних поверхнях робочого колеса


Наведені формули дозволяють аналізувати роботу врівноважувючих пристроїв у перехідних режимах, обумовлених зміною частоти обертання ротора.

З формули (1) видно, що середній тиск та відповідно сила тиску на диск колеса тим менший, чим більша частота обертання рідини у пазусі. Із зменшенням епюра тиску стає більш повною. Ця обставина широко використовується у різних конструкціях для зменшення неврівноваженої осьової сили, вживаються всі можливі заходи для збільшення середньої частоти обертання рідини у правій пазусі та для зменшення її у лівій.

Модель руху рідини як твердого тіла з кутовою частотою
0,5 є дуже грубою. На розподіл швидкостей та тиску по поверхні диска, що обертається, впливає багато чинників [4]: розміри та форма камери, шорсткість стінок, величина та напрям радіальної (витратної) течії, закручування потоку на вході у камеру. Теоретичний аналіз течій з урахуванням цих чинників, особливо на турбулентних режимах, характерних для насосів з високими параметрами, становить великі математичні труднощі, тому основним джерелом інформації поки залишається експеримент. Основні результати досліджень перебігу рідини між диском та кожухом зводяться до наступного.

1. Середня кутова швидкість рідини у зазорі зменшується із збільшенням зазору. Це підтверджується результатами експериментів як на колесі у закритому кожусі (рис. 7), так і вимірюваннями осьової сили на роторі одноступінчастого насоса при різних співвідношеннях зазорів з боку основного та покривних дисків [5].



Рисунок 7 - Вплив осьового зазору на середню частоту обертання рідини у бічних камерах відцентрової ступені


2. Радіальна (витратна) течія від центра до периферії, характерна для камери з боку основного диска робочого колеса, зменшує середню частоту обертання рідини. Зворотний ефект (рис. 8) дає радіальна течія від периферії до центра (з боку покривного диска) [6,7]. Вплив радіальної течії посилюється із зменшенням осьового зазору. Таким чином, радіальні течії у камерах проміжних ступенів приводить до істотного збільшення осьової сили у порівнянні з її розрахунковим значенням. Лише у останньої ступені багатоступеневого насоса радіальний потік з обох боків колеса спрямований від периферії до центра, що приводить до деякого зменшення осьової сили.

  1. Радіальна швидкість визначається витратою через шпаринні ущільнення; тому збільшення радіальних зазорів у шпаринних ущільненнях приводить до значного (у декілька разів) збільшення осьової сили, що дозволяє використовувати значення цієї сили як діагностичний параметр, що характеризує знос ущільнень.



Рисунок 8 - Вплив радіальної течії (витрата q) від периферії до центра на розподіл тиску у камері (- оптимальна витрата ступеня)


  1. У міру збільшення параметрів насосів зростають нестаціонарні складові осьової сили, які особливо великі у перехідних режимах та при роботі насоса на малих подачах. У [8] зазначається, що сильні пульсації потоку у проточній частині можуть привести навіть до зміни знаку осьової сили. Підвищення осьового навантаження у нерозрахункових режимах стало причиною того, що на деяких живильних насосах, наприклад, фірми «Зульцер», окрім звичної п'яти, встановлений додатковий упорний підшипник для сприйняття надмірних осьових сил, що виникають у процесі зупинення насоса та при різкому скиданні навантаження. Основним джерелом нестаціонарних осьових сил є гідродинамічні збурення потоку в проточній частині.

5. У даний час наближену оцінку осьових сил одержують за формулою (2) [1], що грунтується на законі розподілу тиску (1). Точніші розрахунки осьових сил, що враховують витратну (радіальну) течію та початкове закручування потоку на вході у камеру, а також ширину камер, запропоновані у [8, 9]. Ці розрахунки грунтуються на чисельному інтегруванні рівнянь руху рідини та орієнтовані на використання ЕОМ. У [8] результаті розрахунково-теоретичного аналізу коригуються за наявними експериментальними даними за допомогою поправковних коефіцієнтів та корегуючой функцій.


^ Способи врівноваження осьових сил


Найприродніший шлях осьового врівноваження ротора - усунення умов виникнення неврівноважених осьових сил. Проте такий шлях виявляється ефективним лише для насосів з порівняно низькими параметрами. Усунення неврівноважених осьових сил досягається або забезпеченням повної геометричної симетрії, або штучною зміною розподілу швидкостей та тиску в камерах так, щоб результуючі сили тиску на обидві бічні поверхні колеса були рівні.

У насосах з геометричною симетрією ротора відносно серединної площини, перпендикулярної до його осі, наприклад у насосах розхолоджування, залишкові (випадкові) осьові сили сприймаються упорними шарикопідшипниками або, як у бустерному живильному насосі, упорним підшипником ковзання. Недоліками таких схем є додаткові гідравлічні втрати у перевідних каналах, збільшені габарити та металомісткість, ускладнення відливання та конструкції в цілому.





Рисунок 9 - Розміщення шпаринних ущільнень на одному радіусі


Способи вирівнювання сил тиску на основний та покривні диски більш різноманітні. У багатьох випадках, особливо для одноступеневих насосів, шпаринні ущільнення 1 з боку основного диска розташовують на більшому радіусі (рис. 9), а камеру 2 під ущільненням з’єднують із вхідною воронкою отворами 3 у основному диску або у ступенях колеса. Площу отворів 3 рекомендується брати приблизно у 4 рази більшою від площі ущільнюючого зазору, щоб зменшити підпір у камері 2. У такій конструкції на передньому 4 та задньому 1 ущільненнях дроселюється приблизно однаковий перепад тиску та подвоюються об'ємні втрати. Залишкова неврівноважена сила сприймається радіально-упорним підшипником 5 [10].

Витрати через отвори у диску, що обертається, та відповідний підпір у розвантажувальній камері можна визначити, користуючись експериментальними значеннями коефіцієнта витрат, наведеними у [11].

Через дискове тертя рідина у камері 2 обертається, та виникаючий при цьому відцентровий ефект призводить до підвищення тиску уздовж радіуса, що може порушити баланс сил тиску, діючих на колесо. Для запобігання цьому в камері 2 (рис. 10 а) встановлюють нерухомі радіальні лопатки 1, що гальмують окружний потік. На рисунку 10 б та 10 в показані епюри тиску у камері відповідно без лопаток та з лопатками [12].

Іншим поширеним способом зменшення осьової сили є використовування радіальних лопаток ^ 1, розміщених на основному диску робочого колеса 2 (рис. 11). Лопатки збільшують середню частоту обертання рідини , та відповідно до формули (1) зменшується середній тиск на тильну поверхню робочого колеса. Оребрення коліс приводить до значних втрат потужності, які можна оцінити за формулою [11]:


,


де ; ; та - внутрішній і зовнішній радіуси лопаток. Повністю врівноважити ротор на всіх режимах роботи не вдається, тому залишкова осьова сила сприймається радіально-упорним підшипником.

Останнім часом з'явилося багато конструкцій насосів [10], в яких розподіл тиску в бічних камерах автоматично змінюється так, щоб результуюча осьова сила залишалася такою, що дорівнює нулю. Регулюючою дією у цих конструкціях є осьовий зсув робочого колеса, що викликає відповідну зміну геометрії лопаток імпелера. Проте такі конструкції не тільки малоекономічні, але і надмірно складні та ненадійні.




а)

Рисунок 10 - Проточна частина насоса ЦЕН-61 (а), епюра тиску у камері без лопаток (б) та з радіальними нерухомими лопатками (в)


У одноступеневих насосах широко застосовується економічніше автоматичне урівноваження сил тиску на обидва боки колеса за допомогою змінних дроселів, провідність яких змінюється при осьових зміщеннях ротора (рис. 12). Якщо, наприклад, під дією виниклої неврівноваженої осьової сили ротор 1 зміститься вправо, то торцевий зазор 2 зменшиться та тиск у камері 4 збільшиться настільки, що сили тиску на обидва боки колеса 3 зрівняються. Різні модифікації таких способів врівноваження використовуються у конструкціях ГЦН [10], а також у турбонасосних агрегатах двигунів літальних апаратів. Закручення потоку в камері 4 і витратна течія, спрямовані від периферії до центра, можуть значно зменшити середній тиск, тому в камері розміщують нерухомі радіальні лопатки 5, які гальмують окружний потік та вирівнюють тиск по радіусу.




Рисунок 11 - Секційний насос з радіальними лопатками на тильному боці робочих коліс



Рисунок 12 - Врівноваження осьової сили за допомогою змінного торцевого дроселя


У деяких конструкціях одноступеневих насосів робоче колесо кріплять на валу по ходовій посадці, а тильну порожнину з’єднують із вхідною воронкою дроселем, опір якого залежить від положення колеса. При цьому вал утримується від осьових зміщень упорним підшипником.

У більшості конструкцій багатоступеневих насосів особливих заходів щодо зменшення осьових сил не вживають, а діючі на ротор сили врівноважують спеціальними розвантажувальними пристроями.

Найпростішими такими пристроями є розвантажувальні поршні (думіси), що сприймають постійне осьове зусилля, їх виконують циліндровими, ступеневими та з конічними ділянками (рис. 13 а, б, в). Оскільки у процесі роботи насоса осьова сила, діюча на ротор, може значно змінюватися, розвантажувальні поршні доводиться доповнювати упорними підшипниками на порівняно великі залишкові осьові навантаження. Для великих насосів це, як правило, двосторонні упорні підшипники з колодками. На рисунку 14 показана багатоступенева відцентрова машина, у якій осьове врівноваження ротора здійснюється ступеневим поршнем 1 з лабіринтовими ущільненнями 2 та двостороннім упорним підшипником 3 із сегментними самоустановлюваними колодками.



а) б)



в)

Рисунок 13 - Конструкції розвантажувальних поршнів:

а - циліндровий; б - ступеневий; в – конічний


У даний час для великих високонапірних багатоступеневих насосів найефективнішим способом урівноваження осьових сил є використовування автоматичних врівноважуючих пристроїв – гідроп’ят. Гідроп’ята (рис. 15) містить жорстко закріплений на валу розвантажувальний диск 5, нерухоме опорне кільце (подушку) 2, послідовно розміщені циліндровий 1 та торцеві дроселі 3 і камеру 4, що розділяє ці дроселі. Повний перепад тиску на гідроп'яті становить різницю між тиском нагнітання та тиском у камері за гідроп’ятою. Найчастіше ця камера сполучена з вхідним патрубком насоса, тоді - тиск на вході. Частина загального перепаду тиску дроселює на торцевому дроселі ^ 3, провідність якого залежить від ширини зазору z, тобто осьового положення ротора. Якщо під дією надмірної осьової сили ротор зміщується вліво, то зазор z зменшується, а тиск збільшується, відновлюючи рівність сили , діючої на ротор, та врівноважуючої сили , діючої на розвантажувальний диск. Таким чином, гідроп’ята автоматично підтримує осьову рівновагу ротора: .



Рисунок 14 - Відцентрова машина із ступеневим поршнем та двостороннім упорним підшипником



Рисунок 15 – Гідроп’ята з віджимним пристроєм

Для нормальної роботи гідроп’яти необхідно, щоб ротор мав вільні осьові переміщення, принаймні у межах можливих змін торцевого зазору, тому на кінцях вала необхідно встановлювати лише радіальні підшипники. Функції упорного підшипника виконує сама гідроп’ята. Дуже перспективне використовування системи авторозвантажування не тільки упорного, але і радіального гідростатичного підшипника.

Задирання на контактних торцевих поверхнях відбуваються найчастіше на не розрахункових, перехідних режимах, при розгоні та вибігу, коли гідравлічна врівноважуюча сила мала. У зв'язку з цим у насосах, для яких за умов експлуатації потрібні часті пуски та зупинки, встановлюють віджимні пристрої (рис. 15, поз. 6), через яке осьове зусилля пружин передається на ротор та при малих обертаннях зсовує його у бік нагнітання, збільшуючи торцевий зазор у гідроп’яті і тим самим попереджаючи можливі задирання. Віджимні пристрої слід рекомендувати також у насосах з турбоприводом, оскільки процес розгону та зупинки приводної турбіни відбувається повільно.

Температура перекачуваної рідини у камері гідроп’яти підвищується у порівнянні з температурою на вході за рахунок енергії в'язкого тертя у зазорах та гідравлічних втрат у проточній частині насоса. У режимах малих подач, коли значна частина потужності, споживаної насосом, втрачається на нагрівання рідини, підвищення температури може скласти 10-15 °С. У випадку високої температури на вході, наприклад у живильних насосах, температура в камері після торцевого зазору може досягти критичного значення, при якому тиск у камері менше відповідного тиску насиченої пара. У результаті, перш за все у торцевому зазорі п'яти, може відбуватися більш менш інтенсивне пароутворення, що зменшує несучу здатність та збільшує небезпеку виникнення задирання в торцевому дроселі.

Щоб запобігти пароутворенню, тиск у камері після торцевого зазору необхідно підтримувати вищим, ніж тиск насиченого пару при максимально можливій температурі та при мінімальному тиску в лінії відведення витоків з гідроп’яти. Найпростішим засобом підвищення тиску в камері є використовування додаткового циліндрового дроселя між торцевим зазором та лінією відведення витоків (рис. 16 а). У деяких випадках гарантований підпір після торцевого зазору створюють, змінюючи послідовність торцевого та циліндричного дроселів (рис. 16 б).



а) б)

Рисунок 16 – Гідроп’яти з додатковим циліндровим дроселем (а) та з внутрішнім розташуванням торцевого дроселя (б)

На підставі наведеного огляду можна запропонувати класифікацію (рис. 17) засобів зменшення та врівноваження осьових сил, діючих на ротори відцентрових насосів. Найекономічнішими та надійнішими є системи автоматичного урівноваження.






Рисунок 17 – Класифікація засобів зменшення та врівноваження осьових сил

^ Гідростатична сила у торцевому зазорі з малою конусністю


Для обчислення осьової сили, що діє на розвантажувальний диск, необхідно знати закон розподілу тиску в торцевому зазорі. Щоб врахувати можливі похибки виготовлення та деформації диска, розглянемо вісесиметричний торцевий зазор з малою конусністю, що характеризується кутом ? (рис. 18). Течію будемо вважати радіальною, тобто впливом окружних швидкостей знехтуємо. Таке припущення при перепадах тиску понад 2 МПа виправдовується результатами експериментів [11]. Крім того, знехтуємо місцевими втратами тиску на вході та на виході з торцевого зазору. Похибка кількісних результатів, пов'язаних із таким допущенням, значно менше, ніж похибка при визначенні осьової сили Т, яка діє на ротор.

Падіння тиску на подолання опору тертя на кільцевому пояску шириною dr з місцевим торцевим зазором z можна виразити через швидкісний напір, користуючись формулою для плоского каналу


,

де v - радіальна швидкість на радіусі r; - коефіцієнт опору тертя торцевої щілини у автомодельній облості турбулентної течії; 0,06.



Рисунок 18 - Розрахункова схема торцевого зазору з малою конусністю

З рівняння нерозривності vzr=vmzmrm можна виразити швидкість v через швидкість vm на середньому радіусі. Враховуючи також лінійну зміну зазору по радіусу:





отримаємо

,


де






Втрати на тертя на ділянці від r2 до r





Втрати на всьому зазорі


. (4)


Відповідно до рисунка 18 тиск на радіусі r

(5)


де

Для плоского зазору ()


. (6)


Сила тиску, що діє на контактну торцеву поверхню врівноважувального диска,





Враховуючи (5), одержимо ,


(7)

де

(8)


(В - параметр, що враховує вплив конусності на величину сили тиску).

Надалі для побудови статичних характеристик з умови рівноваги осьових сил потрібно буде виразити торцевий зазор . Внаслідок того, що інтегрування виразу (8) дає логарифмічні члени, розв’язати рівняння рівноваги сил відносно zm не вдається. Тому, користуючись малою величиною кутів конусності (за відсутності контакту між диском та подушкою параметра ), розкладемо функцію в ряд Маклорена по , зберігши перші три члени ряду:



Після обчислення похідних і інтеграції по , одержимо

,


, (9)

де




Обчислимо інтеграл


, (10)


де






Формули (9) та (10) дозволяють визначити функцію , яка задана виразом (8). Для того щоб надалі одержати шукані статичні характеристики у безрозмірному вигляді, введемо безрозмірний зазор , де як базове значення зазору братимемо його оптимальну величину. При цьому а функції
b та В1 перетворимо до вигляду

, (11)




З урахуванням цих залежностей формулу (8) можна записати так:

(12)

де



Для плоского зазору

У реальних машинах контактні торцеві поверхні роблять вузькими, так що При цьому вираз (12) можна спростити, якщо його лінеаризувати по :




Якщо перейти до безрозмірного зазору, то


(13)


Для значень , похибка наближеної формули (13) не перевищує 18%.

Перейдемо до визначення тиску р2, та р3. Виразимо перепад тиску через швидкісний напір та відповідний коефіцієнт втрат: . Порівнюючи його з виразом (4), одержимо , а при безрозмірному торцевому зазорі


(14)


Для малих формули (11) спрощуються:




Обчислимо тиск р2, р3, користуючись рівнянням нерозривності. Течію по всьому гідравлічному тракту будемо вважати турбулентною та представимо витрати через відповідні дроселі у вигляді

(15)

де і - постійні провідності циліндричних дроселів [11];

, (16)


де - коефіцієнт опору тертя циліндрової шпарини у автомодельній області турбулентної течії, .

Провідність торцевого дроселя з урахуванням конусності можна одержати, якщо виразити витрату через середню швидкість та перепад тиску:




Якщо порівняти цей вираз з рівнянням (15), одержимо




а переходячи до безрозмірного зазору та використовуючи формулу (14), маємо

(17)

З умови рівності витрат (15)





де




Останні два вирази мають вигляд квадратів еквівалентних провідностей всього гідравлічного тракту (ga) та перших двох дроселів (gb), що розділяють камери з тиском p1 і р3.

З урахуванням формул (17)


; (18)

Якщо ,

. (19)


Величина gc являє собою еквівалентну провідність циліндрових дроселів, а величина може бути виражена формулою




де




Використовуючи значення тиску (18), обчислимо силу (7), яка діє на контактну торцеву поверхню диска:


(20)


де S0 - площа перерізу вхідної воронки колеса; . Коли немає протитиску,




а за відсутності додаткового дроселя ()





З точністю до членів другого порядку у порівнянні з одиницею ~~


(21)


та формула для визначення сили для останнього випадку набирає простого вигляду:

(22)


З цієї формули видно, що унаслідок дифузорності каналу зменшується сила тиску, а через конфузорність вона збільшується; зі зменшенням зазору сила зростає. Отриманий результат не можна поширювати на граничний випадок , оскільки при цьому відсутня течія, та формула (5) для розподілу тиску у зазорі втрачає значення. Результуюча врівноважувальна сила, що діє на розвантажувальний поршень та диск відповідно до рисунка 5,





а з урахуванням формул (18) та (20)




де






- зусилля віджимного пристрою; - коефіцієнт жорсткості; - попереднє стиснення пружин.

Оскільки , при дослідженні статики будемо приймати .

Отримана залежність безрозмірної врівноважувальної сили від безрозмірного торцевого зазору є статичною характеристикою регулятора. Надалі обмежимося випадком, коли протитиск малий
(р4 = 0) і r4 = r1, S3=S2+S0. При цьому характеристика регулятора





а з урахуванням формул (19) - (21)


(23)

де

. (24)

Величина є безрозмірною врівноважувальною силою, що діє на диск (регулююча дія), - додаткова задавальна дія від елемента розвантажувального поршня та віджимного пристрою; - безрозмірна ефективна площа диска. Для конструкції без додаткового циліндрового дроселя , із урахуванням формули (20)


(25)


Максимальне значення сили при , якщо взяти та врахувати формули (19),



  1   2   3   4

Схожі:

Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconКонспект лекцій для студентів спеціальності 080303 «динаміка І міцність»
Конспект лекцій з курсу «Гермомеханіка». Розділ “ Теорія І конструкції механічних торцевих ущільнень” / Укладачі
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconКонспект лекцій для студентів спеціальності 080303 «динаміка І міцність»
Конспект лекцій з курсу «Гермомеханіка». Розділ “ Теорія і конструкції механічних торцевих ущільнень” / Укладачі
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconКонспект лекцій для студентів спеціальності 080303 «динаміка І міцність»
Конспект лекцій з курсу «Гермомеханіка». Розділ “Ущільнення роторів насосів атомних електростанцій” / Укладачі: В. А. Марцинковський,...
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconКонспект лекцій для студентів спеціальності 080303 «динаміка І міцність»
Конспект лекцій з курсу «Гермомеханіка». Розділ “Ущільнення роторів насосів атомних електростанцій” / Укладачі: В. А. Марцинковський,...
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconНавчальний посібник для студентів спеціальності 080303 "Динаміка і міцність"
Охватывает диапазон изменения скорости роста трещины от нуля до критического значения, соответствующего окончательному разрушению...
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconМ. Г. Шульженко, С. О. Закурдай динаміка рухомого складу конспект лекцій
Динаміка рухомого складу. Конспект лекцій /для студентів 4 курсу денної форми навчання напряму підготовки 0922 050702 – «електромеханіка»...
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconКонспект лекцій з дисципліни " Вступ до спеціальності"
Конспект лекцій з дисципліни «Вступ до спеціальності» (для студентів 1 курсу спеціальності 050100 "Економіка підприємства") Авт....
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconПаспорт спеціальності 05. 02. 09 Динаміка та міцність машин
Методи дослідження та розрахунку динамічних процесів у машинах, приладах та апаратах
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconКонспект лекцій для студентів спеціальності 050104 "Фінанси"
Міжнародний менеджмент: Конспект лекцій / Укладач К. В. Савченко. Суми: Вид-во СумДУ, 2009. 154с
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconКонспект лекцій для студентів спеціальності 050104 "Фінанси"
Фінансовий менеджмент: конспект лекцій / укладачі: О. О. Захаркін, Л. С. Захаркіна. – Суми: Вид-во СумДУ, 2010.– 156с
Додайте кнопку на своєму сайті:
Документи


База даних захищена авторським правом ©zavantag.com 2000-2013
При копіюванні матеріалу обов'язкове зазначення активного посилання відкритою для індексації.
звернутися до адміністрації
Документи