Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» icon

Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність»




НазваКонспект лекцій для студентів спеціальності 080303 «динаміка І міцність»
Сторінка2/2
Дата12.07.2012
Розмір0.51 Mb.
ТипКонспект
1   2

Результати експериментальних досліджень ущільнень ротора насоса ГЦН 20000-100


Для забезпечення високих вимог щодо надійності та довговічності, що ставляться до ущільнень ГЦН, доводиться проводити великий обсяг експериментальних досліджень, мета яких полягає у наступному:

зменшення зносу робочих ущільнювальних поверхонь у результаті відповідного підбору матеріалів пар тертя та використовування раціональних методів змащування;

виключення деформації робочих елементів ущільнення від дії сил тиску ущільнованого середовища та температури;

забезпечення статичної та динамічної стійкості ущільнювальних елементів;

розроблення ефективної системи охолоджування блоку ущільнення;

перевірка працездатності ущільнення при нестаціонарних і аварійних режимах;

перевірка справедливості використовуваних у процесі проектування методів розрахунку ущільнень.

Умови експлуатації вузла ущільнення ротора (рис. 11) у
ГЦН 20000-100 характеризуються широким діапазоном зміни тиску (1,5—16 МПа) та температури (20—300°С) ущільнюваної води. Швидкість ковзання на ущільнюваних поверхнях досягає 25 м/с. При певних режимах роботи ротор насоса одержує осьове переміщення до 2-3 мм. У аварійних ситуаціях можливе короткочасне припинення подачі запірної або охолоджуючої води. Необхідний ресурс - не менше 10 тис. год.



Рисунок 15 - Схема установки для випробувань натурних вузлів ущільнень:

1 - фільтр; 2 - бак; 3 - насос; 4 - гідроакумулятор;

5 - компресор; 6 - витратомірний пристрій; 7-теплообмінник;

8 - гідроциклон; 9 - прилад; 10, 11 та 12 - ступені основного ущільнення; 13 - плаваюче ущільнення; 14 - допоміжна ступень ущільнення; 15 - мірний бак; 16 - дросель; 17 – маслонасос


Для експериментальних досліджень та відпрацювання ущільнень до ГЦН 20000-100 у ВНДІАЕН створений ряд стендових установок. Одна з них показана на рисунку 15 [7]. До складу установки входять випробувальний прилад, допоміжне устаткування із забезпечення робочих параметрів, система управління, контролю та сигналізації.

Ротор приладу розміщений в кронштейні вертикально та в нижній частині забезпечений опорним та опорно-упорним гідродинамічними підшипниками ковзання з примусовою системою масляної змазки. Конструкція підшипників дозволяє імітувати під час випробувань осьове переміщення ротора. Блок ущільнення (рис. 11) натурних розмірів встановлений на консолі вала у верхній частині приладу. Для врівноваження осьової сили на роторі розміщена допоміжна ступень імпульсного гідростатичного ущільнення, яка розрахована для роботи при повному перепаді тиску. Приводом приладу служить асинхронний електродвигун (N=100 кВт, n=1500 об/хв), який передає крутний момент через пружну муфту.

Установка має замкнуті контури циркуляції води та масла з теплообмінниками для підтримки необхідної температури. Тиск перед ущільненням створюється двома (робочим та резервним) плунжерними насосами Тр 6,3/100. Зниження пульсацій тиску перед ущільненням досягається за допомогою поршневого гідроакумулятора, підживлення якого виконується компресором КВДМ. Воду від механічних домішок очищають двома сітчастими фільтрами з коморою розміром 40 мкм (один із них резервний). Тонше очищення виконується у гідроциклоні, через який забруднена вода повертається у бак, а чиста надходить у приймальну камеру приладу.

Робочі параметри ущільнення контролюються та вимірюються електроконтактними і зразковими манометрами ЕКМ (класи 1, 6) та МО (класи 0, 4), дифманометром ДМ у комплекті з приладом ВМД, термометрами опору ТСП-309 у комплекті з автоматичним мостом МСР-1-117, ротаметрами РЕ у комплекті з приладом ДСР-1-47. Зовнішні витоки через ущільнення вимірюють мірною посудиною, потужність, споживану приладом, - вимірювальним комплектом К-50 (класи 0, 5), час роботи - лічильником мотогодин. У вимірювальній схемі установки передбачений захист та блокування для автоматичного відключення приладу при порушенні нормальної роботи ущільнень або допоміжного устаткування.

Враховуючи новизну конструкції імпульсного ущільнення та складність динамічних процесів, що відбуваються у ньому під час роботи, спочатку проводили дослідження, які дозволили уточнити механізм роботи ущільнення та вибрати основні передумови для побудови методики розрахунку. Для цього розробили спрощену модель ущільнення (рис. 16), яка дозволила змінювати зазор між робочими поверхнями за рахунок зміни тиску р4 у допоміжній камері 1. Конструкція моделі подібна ущільненню, що показане на
рисунку 10. На нерухомому кільці ^ 2 та кільці, що обертається 3, виконані замкнуті камери 6 та живильні канали 4. Для вимірювання тиску по ширині ущільнюючого паяска на кільці 2 розміщені дренажні отвори 5, сполучені трубками з вимірювальними приладами. Характер зміни тиску р2 у камерах досліджували за допомогою комплекту апаратури, що складається з первинного перетворювача тиску, вимірника високочастотних пульсацій, електронно-променевого або шлейфового осцилографів. Перед записом або фотографуванням з екрану осцилографа виконувалося тарування сигналу за величиною вимірюваного тиску. Про характер зміни зазору судили по витоках через ущільнення, а його величину оцінювали перерахунком за відомими формулами для витрат. При р4з ущільнення працювало в звичних умовах з мінімальним осьовим зазором. З підвищенням тиску р4 зазор збільшувався та при тиску досягав максимального значення.




Рисунок 16 - Модель імпульсного гідростатичного ущільнення

В якості пари тертя використовували силіційваний графіт, що має високу зносостійкість, що дозволило зберегти у ході випробувань практично незмінною геометрію робочої шпарини. Зношення робочих поверхонь оцінювали індикатором (ціна поділки 0,001 мм) та за характером інтерференційних смуг. Випробування проводили на воді з температурою 20-50°С при перепаді тиску до 16 МПа. Частота обертання вала становила 1500 об/хв, а швидкість ковзання у робочій шпарині - 25 м/с.

У результаті експериментальних досліджень декількох варіантів імпульсного гідростатичного ущільнення встановлено таке [3]:

режим перебігу рідини в шпарині ламінарний;

величина середнього тиску р2 у камері залежить від осьового зазору і має тим більше значення, чим менше зазор;

зміна тиску р2 в камері відбувається з основною частотою, що дорівнює добутку частоти обертання ротора на число живильних каналів. У момент поєднання живильного каналу з порожниною камери тиск підвищується приблизно до тиску р1 перед ущільненням, потім знижується до , причому найбільше зниження тиску спостерігається при великих зазорах, коли провідність торцевої шпарини велика;

збільшення зазору приводить до зменшення епюри тиску в шпарині, перед розкриттям ущільнення вона стає близькою до лінійної.

Одержані результати дозволили розробити інженерний метод розрахунку імпульсного гідростатичного ущільнення [3] та встановити зв’язок характеристик ущільнення з його геометричними параметрами.

Тривалі стендові випробування одного ступеня імпульсного гідростатичного ущільнення показали, що воно працює при малих зазорах (2-4 мкм) та має невеликі витоки, при цьому між ущільнювальними поверхнями режим тертя близький до рідинного. Цим можна пояснити той факт, що ущільнюючи паяски при випробуванні майже не зношувалися та зберігали площинність, близьку до первинної. Необхідно також відзначити, що в даному ущільненні значні зміни зазору відбуваються тільки при невеликих перепадах тиску (1-2 МПа), з підвищенням тиску зазор залишається приблизно постійним.

На підставі проведених експериментальних досліджень розроблений блок ущільнення (рис. 11) до ГЦН 20000-100, який пройшов ресурсні випробування на експериментальній установці
(рис. 15) протягом більше 2000 годин. За цей час було виконано до
^ 50 пусків-зупинок приладу. Всього з урахуванням випробувань на інших установках ущільнення пропрацювало більше 5000 годин.

Ресурсні випробування проводили на воді температурою
^ 40-60°С при тиску 1,5-16 МПа. Перепад тиску на плаваючих кільцях підтримувався у межах 0,1-0,5 МПа. Подвійна амплітуда коливань ротора в зоні ущільнення становила 360 мкм при кососиметричній формі коливань. Під час випробувань витратні потужності та температурні характеристики ущільнень були стабільними (рис. 17) [7]. При роторі, що не обертається, ущільнення зберігало повну герметичність у всьому діапазоні перепадів тиску.

Разом з ресурсними випробуваннями проведені спеціальні з відключенням подачі охолоджувальної та запірної води. Встановлено, що швидкість приросту температури та сама температура на ступенях ущільнення за відсутності подачі охолоджувальної води у теплообмінники в основному визначається витоками через ділильний пристрій. При організованих витоках 100 та 700 л/год, які відповідали перепадам тиску на блоці ущільнення 1,5 та 16 МПа, швидкість приросту температури становила відповідно та 0,8° за хвилину.

При припиненні подачі запірної води лінія відведення організованих витоків перекривалася та третя (замикаюча) ступень ущільнення сприймала повний перепад тиску. Відведення фрикційного тепла відбувалося за рахунок циркуляції води через теплообмінники. Випробування при такому режимі підтвердили працездатність ущільнення.



Рисунок 17 - Характеристика блоку ущільнення ГЦН 20000-100:

1 - приріст температури запірної води на основному ущільненні;

2 - споживана потужність; 3 - організовані витоки (q1);

4 - зовнішні витоки (q2)


Для перевірки можливості гідроопресування системи першого контуру АЕС, включаючи ГЦН, без демонтажу блоку ущільнення вала проведені випробування ступеня тиском 25 МПа. При цьому ущільнення забезпечувало повну герметичність та не мало залишкових деформацій.

До спеціальних випробувань належала і імітація переміщення ротора у осьовому напрямі до ±2 мм. Встановлено, що такі переміщення помітного впливу на характеристики ущільнення не здійснювали.

Ревізія блоку ущільнення показала, що основні його елементи не мали помітних пошкоджень та зберегли стан, близький до початкового. Лише на циліндрових поверхнях під плаваючими ущільнюваними кільцями в окремих місцях спостерігалися натирання без задирання та зношення. В цілому стан вузла ущільнення дозволив використовувати його у подальших випробуваннях без заміни яких-небудь деталей та додаткового доведення робочих поверхонь.

Враховуючи, що на експериментальних установках неможливо повністю імітувати динаміку роторної системи, розподіл температур та деформацій, що мають місце в насосі, остаточна перевірка блоку ущільнення, як правило, проводиться безпосередньо у ГЦН. Для цієї мети створений унікальний випробувальний стенд, який повністю відтворює умови роботи ГЦН 20000-100 та дозволяє здійснювати остаточну перевірку і доведення елементів насоса та його систем.

Випробувальний стенд ГЦН 20000-100 є енергоємною спорудою, до складу якої входить цілий ряд систем та устаткування: електрична підстанція, розподільний пристрій, циркуляційний контур з регульованою засувкою та витратомірним пристроєм, система матеріального та теплового балансу, система нормального та аварійного запирання ущільнення ротора насоса, система компенсації об’єму, мастилосистеми, системи забезпечення водою та повітрям і т.д. Управління роботою стенда та насосним агрегатом виконується з пульта, оснащеного системами контролю сигналізації та захисту.

Технічна характеристика

Робочий тиск, ^ МПа 16

Робоча температура, 0С 300

Максимальна подача, м3/год 25000

Потужність електропривода, кВт 8000

Маса устаткування стенда, т 600


Вода у циркуляційному контурі розігрівається за рахунок роботи насосного агрегату. Швидкість розігрівання та розхолоджування регулюється системою теплового балансу. Для зменшення пульсації тиску в циркуляційному контурі передбачена система компенсації об’єму. Захист вузла ущільнення ротора насоса ГЦН 20000-100 від високої температури (300°С) забезпечується системою запирання буферною водою. До складу цієї системи входять два поршневі насоси, регулююча арматура, фільтри (сітчасті та гідроциклони), трубопроводи, контрольно-вимірювальні прилади. Під час роботи частина запірної води (приблизно 1 м3/год) надходить через внутрішнє ущільнення ротора у порожнину насоса та циркуляційний контур. Одночасно з цим така ж кількість води виводиться з контура за допомогою системи матеріального балансу. У разі припинення подачі запірної води в стенді передбачені аварійні ємності, заповнені холодною водою з певним тиском, за допомогою яких запобігається вихід гарячої води з порожнини насоса в зону вузла ущільнення.

Устаткування та системи стенда дають можливість проводити випробування насосного агрегату у всіх експлуатаційних режимах атомних електростанцій, включаючи і аварійні ситуації. Окрім відміченого, випробувальний стенд та його оснащеність контрольно-вимірювальною апаратурою дозволяють досліджувати пульсації тиску в контурі, розподілу температури та силових напруг у найвідповідальніших корпусних деталях насосного агрегату, динаміку роторної системи насоса і т.п.


Висновки


Від вузла ущільнення вала - відповідального елемента ГЦН - багато у чому залежать надійність, безпека та довговічність насосного агрегату, тому створення надійних ущільнювальних систем служить предметом постійних зусиль провідних насособудівних фірм. До цього часу більшість вимушених зупинок ГЦН відбувається через пошкодження ущільнень вала.

Вузли ущільнень є складною системою, що складається з внутрішнього, головного, замикаючого та аварійного ущільнень. Оскільки кожне з них виконує певну функцію та працює у різних умовах, то вузол є синтезом декількох типів ущільнень.

Аналіз існуючих конструкцій показує, що найбільше поширення у ГЦН набули гідростатичні та механічні торцеві ущільнення з поліпшеними умовами змащення. Гідростатичні ущільнення використовуються як головні та служать для дроселювання високих перепадів тиску з відносно невеликими організованими витоками
(0,5 - 1 м3/год). Механічні торцеві ущільнення завдяки малим витокам використовуються головним чином як замикаючі. Останнім часом їх починають застосовувати і в головних ступенях ущільнень.

Перспективне гідростатичне ущільнення з імпульсним врівноваженням аксіально рухомого кільця: під час обертання вала воно забезпечує безконтактну роботу з малими витоками, а при стоянці - повну герметичність. Ці якості імпульсного ущільнення дозволяють звести до мінімуму зношення робочих поверхонь, організовані та зовнішні витоки і використовувати його у всіх ступенях вузла ущільнення.

При розробленні сучасних ГЦН на великі подачі та високий тиск намітилася тенденція до підвищення надійності вузлів ущільнень за рахунок скорочення кількості ступеней та спрощення системи запирання та охолоджування. У зв’язку з цим потрібне створення надійних ступеней ущільнень, що працюють при повних перепадах тиску. Для вирішення цієї задачі необхідне подальше вивчення фізико-механічних процесів, що відбуваються в ущільненнях, удосконалення матеріалів пар тертя, розроблення найефективніших та надійніших методів охолоджування і очищення ущільнювального середовища, зниження деформації основних елементів ущільнень роторів, розроблення точніших методів розрахунку.


Список літератури


1. Голубев А.И. Торцовые уплотнения вращающихся валов.- М.: Машиностроение, 1974.

2. Кондаков Л.А. Уплотнения гидравлических систем. - М.: Машиностроение, 1972.

3. Лисицын К.В., Марцинковский В.А. Расчет и конструкции гидростатических уплотнений роторов насосов АЭС
// Энергомашиностроение. – 1977. - № 8.

4. Майер Э. Торцовые уплотнения. - М.: Машиностроение, 1978.

5. Марцинковский В.А. Гидродинамика и прочность центробежных насосов. - М.: Машиностроение, 1970.

6. Марцинковский В.А. Расчет гидростатических уплотнений с саморегулируемым зазором // Энергомашиностроение. – 1974. - № 4.

7. Москаленко В.В., Передeрий Н.В. Стендовые испытания уплотнения ротора главного циркуляционного насоса атомной электростанции // Электрические станции. – 1978. - № 7.

8. Синев Н.М., Удовиченко П.М. Бессальниковые водяные насосы. - М.: Атомиздат, 1972.

9. Уплотнение вала ГНЦ АЭС с кипящим реактором (проспект). Госкомитет СССР по использованию атомной энергии. - М., 1975.

10. Ченг, Чоу, Уилкок. Поведение гидростатических и гидродинамических бесконтактных торцовых уплотнений.
// Проблемы трения и смазки. – 1968. - № 2.

11. Born D. Umwalzpumpen im Primarkreis von Kernkraftanlager. –KSB Technische Berichte, 1967, 12, S. 37-46.

12. Gleitrinddichtungen. Ponstruktionsmappe 9, Feodor Burgman. 1074 (Каталог фирмы).

13. Honold E.Hauptkulmittelpumpen in Lernkraftwerken. – Brennstoff – Warme – Kraft, 1969, 21, Nr. 10, S. 522-526.

14. Laumer H., Florjaancic D. Mechanical seals for hign pressures and high circumfetencial speeds. 5th Int. Conf. on Fluid Sealing, 1971, Paper A4.

15. Lepert, Cahet, Bertrand. Les problemes dhydrotechnique des pompes primaries des reackteurs nucleares. Journees de Lhydraulique, Question 1, Rappert 7, Peris, 1972.

16. Mayer E. Neuartige Gleitringdichtungen fur Kernkraftwerke. – Pumps – Pompes – Pumpen, 12, 1972, S. 558-560.

17. Mechanical shaft seal engineering. Crane Pacling LTD, 1967 (Каталог фирмы).

18. Meinhard B. Hochdruckpumpen: geloste Dichtungsprobleme. – Meschinenmarkt, 1970, 76. Nr. 29, S. 573-575.

19. Villim P. Development of an improved facetype mechanical ahaft seal for high temperature pressurized water centrifugal circulating pumps. – Proc. 3rd Int. Conf. Fluid Sealing, 1967, pap. B6.

20. Wersollmann W., Noritz G. Andritz main coolant pumps for PWR plants. – Nuclear Engineering International, 1976, 8, p. 58-60.

21. Williams I.G. Shaft-Seal systems for lange power-reactor-pumps. – nucleonics, 1965, 23, N 2, p. 49-55.


Навчальне видання


Гермомеханіка”

конспект лекцій

для студентів спеціальності

8.080303 „динаміка і міцність”

денної форми навчання


Розділ “ Ущільнення роторів насосів атомних електростанцій”


Укладачі: Володимир Альбінович Марцинковський,

Сергій Миколайович Гудков,

Світлана Олексіївна Міщенко


Відповідальний за випуск доц. Є.М. Савченко


Редактор Н.В. Лисогуб


Підп. до друку 05.01.2009, поз.

Формат 60х84/16. Папір офс. Друк офс.

Ум. друк. арк. Обл.-вид. арк.

Тираж 40 пр. Собівартість вид.

зам. №


Вид-во СумДУ при Сумському державному університеті

40007, Суми, вул. Римського-Корсакова, 2

Свідоцтво про внесення суб’єкта видавничої справи до Державного реєстру

ДК № 3062 від 17.12.2007

Надруковано у друкарні СумДУ

40007, Суми, вул. Римського-Корсакова, 2






1   2

Схожі:

Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconКонспект лекцій для студентів спеціальності 080303 «динаміка І міцність»
«Гермомеханіка»: конспект лекцій. Розділ “Автоматичні врівноважувальні пристрої як безконтактні ущільнення” / Укладачі
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconКонспект лекцій для студентів спеціальності 080303 «динаміка І міцність»
Конспект лекцій з курсу «Гермомеханіка». Розділ “ Теорія і конструкції механічних торцевих ущільнень” / Укладачі
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconКонспект лекцій для студентів спеціальності 080303 «динаміка І міцність»
Конспект лекцій з курсу «Гермомеханіка». Розділ “ Теорія І конструкції механічних торцевих ущільнень” / Укладачі
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconКонспект лекцій для студентів спеціальності 080303 «динаміка І міцність»
Конспект лекцій з курсу «Гермомеханіка». Розділ “Ущільнення роторів насосів атомних електростанцій” / Укладачі: В. А. Марцинковський,...
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconНавчальний посібник для студентів спеціальності 080303 "Динаміка і міцність"
Охватывает диапазон изменения скорости роста трещины от нуля до критического значения, соответствующего окончательному разрушению...
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconМ. Г. Шульженко, С. О. Закурдай динаміка рухомого складу конспект лекцій
Динаміка рухомого складу. Конспект лекцій /для студентів 4 курсу денної форми навчання напряму підготовки 0922 050702 – «електромеханіка»...
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconКонспект лекцій з дисципліни " Вступ до спеціальності"
Конспект лекцій з дисципліни «Вступ до спеціальності» (для студентів 1 курсу спеціальності 050100 "Економіка підприємства") Авт....
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconПаспорт спеціальності 05. 02. 09 Динаміка та міцність машин
Методи дослідження та розрахунку динамічних процесів у машинах, приладах та апаратах
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconКонспект лекцій для студентів спеціальності 050104 "Фінанси"
Міжнародний менеджмент: Конспект лекцій / Укладач К. В. Савченко. Суми: Вид-во СумДУ, 2009. 154с
Конспект лекцій для студентів спеціальності 080303 «динаміка І міцність» iconКонспект лекцій для студентів спеціальності 050104 "Фінанси"
Фінансовий менеджмент: конспект лекцій / укладачі: О. О. Захаркін, Л. С. Захаркіна. – Суми: Вид-во СумДУ, 2010.– 156с
Додайте кнопку на своєму сайті:
Документи


База даних захищена авторським правом ©zavantag.com 2000-2013
При копіюванні матеріалу обов'язкове зазначення активного посилання відкритою для індексації.
звернутися до адміністрації
Документи