2 Основные виды топлива icon

2 Основные виды топлива




Скачати 411.25 Kb.
Назва2 Основные виды топлива
Сторінка1/2
Дата07.06.2012
Розмір411.25 Kb.
ТипДокументи
  1   2


Наибольший интерес, вызывают нефть и газ, запасы которых довольно ограничены. В то же время, именно их добыча и переработка наиболее экономичны и целесообразны с точки зрения использования рабочей силы и охраны окружающей среды.

В зависимости от характера использования топливо подразделяется (табл.5.2) на: энергетическое, технологическое и бытовое; по агрегатному состоянию – на твердое, жидкое и газообразное; по способу получения - на естественное и искусственное.


Таблица 5.2 – Основные виды топлива

По способу получения

Естественное

Искусственное


По агрегатному состоянию







Твердое

Дрова, торф,
ископаемые угли,
горючие сланцы

Древесный уголь,
кокс, полукокс,
торфяные и
угольные брикеты

Жидкое

Нефть

Бензин, керосин,
мазут масла, газойль

Газообразное

Природный газ,
попутный
(конденсатный) газ

Доменный, коксовый, конвекторный,
генераторный газы


Основными видами органического топлива, используемого в энергетике, являются: твёрдого – угли и торф; жидкого – мазут; газообразного – природный газ. Торф и угли, твердое органическое топливо являются продуктами разложения органической массы растений и отличаются друг от друга химическим возрастом (торф – самое молодое). Древнейшие месторождения угля известны в канадской Арктике (350 млн.лет). Важнейший период углеобразования в истории Земли приходится на интервал последних 350-250 млн. лет. Угленосные отложения в этот промежуток времени обнаружены на всех континентах, но самые большие толщи – в Северной Америке, Европе и Азии, которые в течение периода углеобразования находились в экваториальных и умеренных широтах. Теплый климат и обилие осадков благоприятствовали развитию огромных болот. Формирование угля происходило и в последующие периоды, особенно в меловой
(~ 20 млн. лет назад), но ни в один из них угленакопление не было столь обширным и интенсивным, как в великую угольную эпоху.

Геологи полагают, что большая часть главных угольных бассейнов уже открыта. Мировые запасы всех видов углей оценены в 8620 млрд. т, а дополнительные потенциальные ресурсы – в 6650 млрд. т. При этом извлекаемыми считаются запасы углей в пластах мощностью не более 0,3 м, залегающих на глубине не более 2000 м. Угли, не отвечающие этим требованиям, относятся к потенциальным ресурсам. Примерно 43% углей мира залегают в странах СНГ (бывшего СССР), 29% – в Северной Америке, 14,5% – в странах Азии, главным образом в Китае, 5,5% – в Европе. На остальной мир приходится 8% угля. Хотя уголь во всем мире не является ведущим видом топлива, но трудности в снабжении нефтью и газом ведут к тому, что в ближайшие десятилетия уголь станет господствующим топливом на планете. При этом в течение длительного времени подземная добыча будет, видимо, оставаться преобладающей формой разработки уголь­ных месторождений.

Ископаемые угли подразделяются на бурые, каменные и антрацит: бурые следуют за торфом по химическому возрасту, затем — каменные и антрацит. Значительная роль в обеспечении ТЭК топливом принадлежит нефти и природному газу. Энергетический эквивалент оцененных потенциальных ресурсов (по данным всемирной энергетической конференции) составляет: нефти – (1,51022) Дж, газа – (1,11022) Дж. Ресурсы нефти и газа так же, как и угля, расположены на земном шаре очень неравномерно. Регионы, которые, сейчас являются главными производителями нефти и газа, обладают наибольшим потенциалом и для новых открытий. При сохранении существующей скорости роста потребления все ресурсы нефти и газа могут иссякнуть через несколько десятилетий.

Человечество интересуют две проблемы, непосредственно связанные с теплоэнергетикой: на какой срок хватит ТЭР; где грань загрязнения атмосферы?

В настоящее время мировое использование энергоресурсов в течение года эквивалентно 17-25 млрд.т условного топлива, энергоемкость которых эквивалентна 450-500 Эдж (1 эксаджоуль (Эдж) равен 1018 джоулей). Если исходить из этой цифры и мировых запасов энергоресурсов (табл.5.3.), то только органического топлива человечеству хватит на тысячу лет.

Таблица 5.3 – Мировые энергоресурсы.



^

Источники энергии


Ресурсы, ЭДж

1.

Невозобновляемые:

Ядерная энергия


Химическая энергия органического топлива


1,97106

5,21105

2.

Неисчерпаемые:

Термоядерная энергия синтеза

Геотермальная энергия


3,6109

2,9106

3.

Возобновляемая:

Солнечная энергия, которая достигает земной поверхности и превращается в тепловую

Энергия морских приливов

Энергия ветра

Энергия рек

Биоэнергия лесов



2,4106

2,5105

6,1103

1,2102

1,5103


Однако современная технология позволяет добывать далеко не все объемы ТЭР. Не все страны имеют оптимальное соотношение между уровнем добычи ТЭР и их использованием. Все это заставляет констатировать тот факт, что энергетический кризис вполне реален, а человечество сегодня не нашло еще путей его преодоления.

Как видно из табл.5.4., весьма перспективно использование возобновляемых источников ТЭР, однако современная энерготехнология еще далека от их массового использования. К сожалению, человечество далеко еще и от решения проблем использования термоядерной энергии, общие запасы которой просто фантастические – 3,6109 Эдж (при нынешнем уровне энергозатрат их хватит на 10 млн.лет!).

Что касается Украины, то ее энергетика в настоящем времени находится в тяжелом состоянии, несмотря на то, что только разведанные запасы угля в Украине составляют 47 млрд.т. Однако технология добычи угля не отвечает геологическим особенностям месторождений. Почти 80% объемов ТЭК физическо и морально устарели, уровень затрат энергоресурсов выше уровня их производства. Наблюдается значительный дефицит остальных видов ТЭР, что наглядно демонстрируют данные табл.5.4.

Таблица 5.4 – Энергоресурсы Украины: добыча и потребность
^

Вид топлива


Объемы

Процент
обеспеченности собственным ТЭР

использования

собственного производства
^
Природный газ

112 млрд.м3

22 млрд.м3

20%

Нефть


32 млн.т

4 млн.т

12%

Уголь

(?)

140 млн.т

(?)

Ядерное топливо

Твелы производства России

Уран добывает Украина

0


5.2.2. Состав и характеристики органического топлива


Топливо, поступающее в технологические устройства для сжигания, называется рабочим. В его состав входят: углерод, водород, сера, кислород, азот, а также влага W и минеральные примеси А. Указанные элементы образуют сложные химические соединения.

Наличие кислорода и азота, составляет внутренний баланс топлива и снижает его энергетическую ценность. Содержание кислорода в топливе колеблется от 2% (антрацит) до 40% (древесина), в мазуте – меньше 1%. Содержание азота в твердом и жидком топливе не более 1%. Влага и минеральные примеси (зола) составляют внешний баланс топлива. Содержание золы в твердом топливе – 1ч60% (5ч60%) на рабочую массу, в мазуте – 0,1ч0,3%, влаги – 1ч2%.

Собственно горючими в органическом топливе являются углерод, водород и сера. Главная составляющая – углерод: чем выше его содержание, тем выше количество тепла, выделяемого при его сгорании. С увеличением возраста топлива содержание углерода увеличивается, водорода – уменьшается.

Процесс сжигания топлива представляет собой окисление углерода кислородом воздуха. При полном сгорании углерода образуется относительно безвредный диоксид углерода СО2 и выделяется 32,8 МДж теплоты на 1 кг углерода. При неправильной организации процесса горения (обычно при недостатке воздуха) продуктом сгорания является очень токсичный оксид углерода СО и выделяется всего 9,2 МДж теплоты. Содержание углерода в твердом топливе – 25ч93% на рабочую массу, в мазуте – 83ч85%.

Важной горючей составляющей топлива является водород, содержание которого колеблется в твердом топливе от 2 до 5%, в жидком – от 10 до 15%. Количество теплоты, выделяющееся при сгорании (окислении) водорода составляет 120,8 МДж на 1 кг.

Третий горючий элемент – сера: органическая (в соединениях с водородом, углеродом, азотом и кислородом) – Sор, колчеданная (в соединениях с железом) – Sк, сульфатная (в виде солей серной кислоты CaSO4, MgSO4, FeSO4 и др.) – Sc.

Свойства твердого топлива как горючего материала определяются его составляющими в сухом беззольном состоянии (обозначаются индексом «daf»: dry ask frek —условное состояние топлива, не содержащее общей влаги и золы). Сюда включаются элементы органической массы топлив и колчеданная сера, сгорающая вместе с органической массой. Таким образом, состав топлива характеризуется массовым содержанием образующих его элементов, а именно: Сdaf+Hdaf+Odaf+Ndaf+Sdaf. Здесь Sdaf –суммарное содержание горючей серы. Сера органическая и колчеданная составляют горючую или летучую серу Sdafл=Sodaf+Skdaf. Сера сульфатная не является горючей и включается в золу. Содержание горючей серы: в твердом топливе – 0ч9%, в мазуте – 0,5ч3%. При полном сгорании 1 кг серы выделяется
9,2 МДж теплоты. При этом образуется токсичный сернистый ангидрид SO2 и (в небольших количествах) еще более токсичный серный ангидрид SO3. Их выброс с продуктами сгорания вызывает загрязнение воздушного бассейна, а в сочетании с водой (водяными парами) является причиной кислотных дождей (H2SO3, H2SO4).

Содержание азота в сухом беззольном состоянии твердых топлив обычно составляет 1ч2% по массе. Несмотря на столь малое количество, азот является весьма вредным компонентом, поскольку при сгорании азотосодержащих соединений в высокотемпературных топках образуются сильнотоксичные оксид NO и диоксид NO2 (при температуре свыше 1200єС они образуются также и из атмосферного азота).

Внешним балластом топлива является влажность и зола. Влажность твердого топлива в рабочем состоянии может превышать 50% и определяет экономическую целесообразность использования данного горючего материала и возможность его сжигания (например, для превращения одного килограмма воды, взятой при температуре 0єС, в пар комнатной температуры требуется 2,5 МДж теплоты).

Зола включает в себя различного рода минеральные примеси, которые в зависимости от условий сжигания претерпевают изменения. В соответствии с существующими стандартными нормами золу необходимо улавливать, транспортировать в отвалы или (что предпочтительнее) утилизировать и использовать в народном хозяйстве.

Важными характеристиками органического топлива: являются выход летучих веществ (для твердого топлива) и теплота сгорания.

Выход летучих веществ Vdaf в процентах на сухое беззольное состояние определяется путем прокаливания 1 кг топлива в закрытом тигле при температуре 850±10єС в течение 7 минут, в результате которого образуются газы, водяные пары и углеродосодержащий осадок. Чем больше выход летучих, т.е. чем больше сухой беззольной массы превращается при нагревании в горючий газ, тем проще зажечь это топливо и легче поддержать процесс горения. Органическая часть древесины и горючих сланцев при нагревании почти полностью переходит в летучие вещества (Vdaf=85ч90%), в то время как у антрацитов Vdaf=3ч4%. (табл.5.5).


Таблица 5.5 – Основные характеристики украинского твердого топлива.

Основные
характеристики

Выход
летучих

Vл

Содерж.
серы

SHP

Влажность

Wp

Зольность

Ap

Теплота
сгорания

(МДж/кг)

QHP

Виды топлив

Торф

70%

0,1…0,2%

30…50%

5…23%

10,5…14,6

Бурые угли

40%

0…8%

3040%

15…30%

10,0…17,0

Каменные угли

9…50%

0…8%

5…10%

18…30%

24,0..29,0

Антрациты

2…9%

0…8%

5…10%

<5%

~26,0

Полуантрациты

5…9%

0…8%

<5%

<5%

28ч30


Теплота сгорания — количество теплоты, выделяющееся при полном сгорании топлива. Различают высшую QвP и низшую QнР теплоту сгорания (теплотворную способность топлива).

Высшая теплота сгорания QвP – количество теплоты, выделяющееся при сгорании 1 кг твердого, жидкого или 1м3 газообразного топлива при превращении водяных паров, содержащихся в продуктах сгорания, в жидкость. Низшая теплота сгорания QнР меньше высшей на величину парообразования влаги, имеющейся в топливе (Wp) или образующейся в результате сгорания водорода топлива (9Нр).

Условное топливо как понятие используется для сравнительных расчетов.

Условное топливо – топливо, теплота сгорания которого принята равной 29,35 МДж/кг (7000 ккал/кг). Перевод действительного количества топлива в условное производится умножением количества данного топлива на его эквивалент Э = QнP /29,35.

Максимальная низшая теплота сгорания твердых топлив, доходит до QнР = 28 МДж/кг, минимальная составляет 10 МДж/кг и ниже (в зависимости от содержания балласта). Теплота сгорания обезвоженных мазутов
QнР =39ч41,5 МДж/кг. Поскольку элементный состав всех жидких топлив, полученных перегонкой нефти, практически одинаков, их теплота сгорания примерно равна.

Химический состав первородной нефти и газа практически не изменился и остался в пределах сравнительно узкого ряда химических смесей (табл.5.6).

^ Жидкие топлива. Получают путем переработки нефти. Сырую нефть нагревают до 300370єС, после чего полученные пары разгоняют на фракции, конденсирующиеся при различной температуре tк: сжиженный газ (выход около 1%), бензиновую (около 15%, tк = 30ч180єС) керосиновую (около 17%, tк = 120135єС), дизельную (около 18%, tк = 180350єС). Жидкий остаток с температурой начала кипения 330350єС называется мазутом. Указанные фракции служат исходным сырьем при получении смазочных материалов и топлив для двигателей внутреннего сгорания и газотурбинных установок (бензина, керосина, дизельных топлив и т.д.).


Таблица 5.6 – Химический состав нефти и природного газа.

Элемент

Нефть, %

Природный газ, %

Углеводород

82,2-87,0

65-80

Водород

11,7-14,7

1-25

Сера

0,1-5,5

Следы-0,2

Азот

0,1-1,5

1-15

Кислород

0,1-4,5



До настоящего времени мазут продолжает оставаться основным жидким энергетическим и отопительным топливом. Представляет собой сложную смесь углеводородов, в состав которого входит углерод (СР= 84ч86%) и водород (HP=10ч12%). Это обеспечивает высокую теплотворную способность мазута (QHP=40ч41 МДж/кг). Балласт мазута невысок АР=0,2ч0,3%; WP=0,1ч1%. В состав золы входят соединения ванадия, никеля, железа и др. металлов.

Одним из основных показателей мазута являются вязкость (определяемая по его способности к распылению в зависимости от температуры) и сернистость (определяется содержанием серы: малосернистые (до 0,5%), среднесернистые (до 2%) и высокосернистые (до 3,5%). Мазуты, получаемые из нефти ряда месторождений, могут содержать серы до 4,3%, что резко усложняет защиту окружающей среды и оборудования.

^ Газообразные топлива. Главным является природный газ, основным компонентом которого (85ч98%) служит метан СН4. Основные горючие составляющие – тяжелые углеводороды СnHm, водород Н2, сероводород Н2S, окись углерода СО, балласт – СО2, N2, SO2, H2O, O2. Теплота сгорания природного газа – 31,0ч37,9 МДж/кг. Природный газ очищают от сернистых соединений, но часть их (в основном сероводород) может оставаться.

При добыче нефти выделяется так называемый попутный газ, содержащий меньше метана, чем природный, но больше высших углеводородов и поэтому выделяющий при сгорании больше теплоты. В настоящее время весьма актуальна проблема его полного использования.

В промышленности и особенно в быту находит широкое распространение сжиженный газ, полученный при первичной переработке нефти и попутных нефтяных газов: технический пропан (не менее 93% С4Н18 +
+ С3Н6), технический бутан (не менее 93% С4Н10 + С4Н8) и их смеси.

На металлургических заводах в качестве попутных продуктов получают коксовый и доменный газы, используемые там же для отопления печей и технологических аппаратов. Иногда (после очистки от сернистых соединений) коксовый газ применяют для бытового газоснабжения прилегающих жилых массивов. Однако из-за большого содержания СО (5ч10%) он значительно токсичнее природного. Избытки доменных газов чаще всего сжигают в топках заводских электростанций.

В районах расположения угольных шахт своеобразным «топливом» может служить метан, выделяющийся из пластов при их вентиляции. Однако при этом надо иметь в виду, что концентрация метана в смеси с воздухом более 5%, но менее 15% – взрывоопасна.

В последние годы в Украине вновь возродился интерес к газам, полученным путем газификации, (генераторным) или путем сухой перегонки (нагрев без доступа воздуха) твердых топлив, в первую очередь, труднодоступных углей Донецкого месторождения.

Все большее применение в ряде мест находит биогаз-продукт анаэробной ферментации (сбраживания) органических отходов (навоза, растительных остатков, мусора, сточных вод и т.д.). Конструкция небольшого ферментатора предельно проста: тепло- и гидроизолированная яма с гидрозатвором, заполненная разжиженным сырьем (влажность 88ч94%) с плавающим в ней колоколом-аккумулятором для вывода газа. С 1 м3 объема при температуре 30ч40оС может быть получено около 1м3 газа, состоящего в основном из метана и диоксида углерода с небольшими добавками сероводорода, азота и водорода. Получающиеся в процессе ферментации жидкие отходы используются в качестве высококачественного удобрения, содержащего вдвое больше связанного азота, чем исходное сырье.

Анаэробное сбраживание отходов крупных животноводческих комплексов позволяет решить чрезвычайно острую проблему загрязнения окружающей среды жидкими отходами путем превращения их в биогаз и высококачественные удобрения.

Часть 6 ЭНЕРГОГЕНЕРИРУЮЩИЕ УСТАНОВКИ
^ НА ОРГАНИЧЕСКОМ ТОПЛИВЕ



6.1. Котельные установки


6.1.1. Общие сведения


В зависимости от вида вырабатываемого рабочего тела котельные установки подразделяются на паровые, вырабатывающие водяной пар требуемых параметров, и водогрейные, которые выдают горячую воду определенной температуры.

По назначению котельные установки делятся на энергетические, про­изводственные (промышленные), отопительно-производственные и отопительные. В энергетических котельных установках вырабатывается пар высокого (р  9 МПа) и среднего (р  3,5 МПа) давлений, предназначенный для дальнейшего преобразования в паровых турбинах на ТЭС.

Производственные котельные установки предназначены для получения водяного пара или горячей воды на различные технологические нужды. В отопительных котельных установках вырабатывают водяной пар низкого давления или нагревают воду только для отопления, вентиляции и горячего водоснабжения жилых и производственных зданий и сооружений.

Следующим важным признаком классификации котельных установок является расположение в них продуктов горения топлива и рабочего тела (воды, водяного пара). Котельные установки, в которых продукты горения движутся в трубках, а вода – снаружи труб, называют газотрубными, в противном случае – водотрубными (вода движется в трубках, а газы – снаружи).

Отопительные и отопительно-производственные котельные установки могут быть газотрубные и водотрубные, для энергетических целей используются только водотрубные котлы.

И, наконец, важным признаком, по которому классифицируют паро­вые котельные установки, является способ создания движения в них рабо­чего тела. По этому признаку они могут быть с естественной и принуди­тельной циркуляцией.

Источником тепловой энергии в котельных установках служит органическое топливо. Рабочим телом является вода, в отдельных случаях используются высококипящие органические жидкости, например, даутерм, дифениг и др. Применение последних обусловлено их теплофизическими свойствами, в первую очередь, высокой температурой кипения и конденсации при низких (в сравнении с водой) давлениях. Это позволяет повысить КПД бинарного цикла, в котором водяной пар обеспечивает возможность использования нижнего температурного предела, а органические жидкости – верхнего.

Рабочий процесс в котельных установках состоит из следующих конечных стадий: 1) горение топлива; 2) теплопередача от горячих дымовых газов к воде или пару; 3) парообразование (нагрев воды до кипения и ее испарение) и перегрев насыщенного пара.

Котельная установка состоит из котла соответствующего типа и вспомогательного оборудования, обеспечивающего его работу.

Котел – конструктивно объединенный в одно целое комплекс устройств для получения пара или нагрева воды под давлением. Основными элементами котла являются топка и теплообменные поверхности. Взаимное расположение топки и газоходов, в которых размещаются теплообменные поверхности нагрева, т.е. компоновка котла, определяется свойствами сжигаемого топлива, паропроизводительностью и выходными параметрами пара.

Различают П-, Т- и N-образные и башенную компоновки котла (рис.6.1). При сжигании мазута, природного газа, как правило, используется П-образная компоновка (рис.6.1, а), при которой котел имеет два вертикальных газохода (топочную камеру и конвективную шахту) и соединяющий их горизонтальный газоход. При сжигании твердых топлив она применяется в котлах паропроизводительностью D до 1000-1600 т/ч.

Т-образная компоновка (рис.6.1, в), способствующая уменьшению глубины конвективной шахты и высоты соединительного газохода, применяется для мощных котлов (D  1000 т/ч), работающих на твердых топливах. Для углей с высокоабразивной золой Т-образная компоновка применяется для котлов, начиная с D  500 т/ч.

N-образная компоновка котла (рис.6.1, б) используется при сжигании топлив с высоким содержанием в золе оксида кальция и щелочей. Котел выполняется трех- или четырехходовым, с подъемной или инвертной топкой и ширмами в промежуточных газоходах.

Для мощных котлов при сжигании газа и мазута или твердого топлива (в том числе бурых углей с большим содержанием высокоабразивной золы) может быть использована башенная компоновка котла (рис.6.1, г) в сочетании с открытой и полуоткрытой компоновками котельной установки.

Для нормального функционирования котла необходимо обеспечить подготовку и подачу к нему топлива, подачу окислителя для горения, а также удалить образующиеся продукты сгорания, золу и шлак (при сжигании твердого топлива) и др.


  1   2

Схожі:

2 Основные виды топлива iconОсновные понятия об эргономике, дизайне, художественном проектировании
Основные виды соответствий между человеком и техникой, учитываемые при проектировании автомобилей
2 Основные виды топлива iconМежгосударственный стандарт единая система конструкторской документации основные положения виды и комплектность конструкторских документов гост 102-68 ипк издательство стандартов
Настоящий стандарт устанавливает виды и комплектность конструкторских документов на изделия всех отраслей промышленности
2 Основные виды топлива icon1. Концептуальные основы стратегического анализа Понятие стратегии и виды стратегий. Управление, основные виды управления и этапы его развития. Понятие организационной среды как объекта стратегического анализа. Предмет стратегич
Стратегический анализ является нормативной дисциплиной предусмотренной учебным планом подготовки магистров специальности «Учет и...
2 Основные виды топлива iconВодорода предполагается использовать в качестве автомобильного, авиационного и ракетного топлива, а также топлива для газовых турбин и мгд-установок
Мгд-установок. Например, запас топлива в виде жидкого водорода в 3-4 раза меньше по массе, чем традиционного, что в 2,5 раза увеличивает...
2 Основные виды топлива iconКонтрольные вопросы по дисциплине "Основы менеджмента"
Сущность и содержание термина "менеджмент", основные виды менеджмента и их характеристика
2 Основные виды топлива iconПеречень вопросов для проведения зачета по дисциплине «Основы эргономики и дизайна»
Основные виды соответствий между человеком и техникой, учитываемые при проектировании автомобилей
2 Основные виды топлива iconМетодические указания для выполнения лабораторных работ по дисциплине
Охватывают топлива с содержанием серы до 2%, вторые – топлива с содержанием серы от 2 до 3,5 %
2 Основные виды топлива iconМалоэнергоемкая технология производства пенобетона в. Н. Тарасенко
Анализ потребления тепла показал, что на нужды отопления и горячего водоснабжения в зданиях средней полосы России расходуется около...
2 Основные виды топлива iconГруппа Т58 государственный стандарт союза сср
Настоящий стандарт устанавливает основные виды пожарной техники, предназначенной для защиты от пожаров предприятий, зданий и сооружений...
2 Основные виды топлива iconИзменение свойств грунтов под воздействием внешних факторов основные виды техногенного воздействия на грунты и их классификация
Происходят разрушение, химическое преобразование, уплотнение и другие воздействия, в результате которых изменяются физико-механические...
Додайте кнопку на своєму сайті:
Документи


База даних захищена авторським правом ©zavantag.com 2000-2013
При копіюванні матеріалу обов'язкове зазначення активного посилання відкритою для індексації.
звернутися до адміністрації
Документи