Теоретична механіка icon

Теоретична механіка




НазваТеоретична механіка
Сторінка10/32
Дата23.06.2012
Розмір1.21 Mb.
ТипДокументи
1   ...   6   7   8   9   10   11   12   13   ...   32

Рис. 5.4




Кут між векторами і визначається за допомогою формули їх скалярного добутку:

.

Якщо на практиці при вирішенні задач рівноваги твердого тіла виникає питання зміни центра приведення системи сил з точки ^ О у наперед задану точку О1, то головний вектор, головний момент і момент результуючої приєднаної пари системи сил мають наступні властивості.

Враховуючи вирази (5.2), (5.8) є очевидним, що головний вектор системи сил ні за величиною, ні за напрямком не залежить від положення центра приведення, тобто завжди виконуватиметься рівність (точка О1 - новий центр приведення). Це обумовлено тим, що за формулою визначення () головний вектор є функцією тільки параметрів сил початкової системи і не залежить від положення точки О на тілі.

У механіці головний вектор називається першим статичним інваріантом. Це означає, що для будь-якої вихідної системи сил його величина і напрямок є сталими величинами, тобто незалежними (інваріантними) до вибору центра приведення:

,

де п - номер поточної точки приведення.

Момент результуючої приєднаної пари вихідної системи сил при перенесенні центра приведення буде визначатися (рис. 5.5) за формулою

, (5.9)

де - момент приєднаної пари сил.

На рис. 5.5 вектор є, за правилом векторного добутку, перпендикулярним що площини Е, якій належать вектори і , тобто .




Рис. 5.5



Вираз (5.9) отримано за допомогою наступних еквівалентних системних перетворень:

,

де .

При цьому використано лему про паралельне перенесення сили в точку ^ О1 з одночасним додаванням у центрі О1 пари сил з моментом , рівним моменту вихідної сили відносно точки О1, а також враховано властивості моменту (моменту приєднаної пари сил у точці ^ О) як вільного вектора, який можна переносити паралельно самому собі в будь-яку точку тіла (в даному випадку з точки О у точці О1). Крім того, використано властивості геометричного додавання векторів моментів пар сил у точці О1, тобто:

. (5.10)

З рівняння (5.10) виходить, що момент приєднаної пари сил при перенесенні центра приведення змінюється на величину моменту пари сил, рівному моменту сили відносно нового центра приведення О1.

Головний момент системи сил при перенесенні центра приведення вихідної системи сил матиме, в свою чергу, наступну властивість.

Враховуючи вираз (5.3) і рис. 5.6, отримаємо:



. (5.11)

Аk


Рис. 5.6



З рівняння (5.11) випливає, що головний момент вихідної системи сил при перенесенні центра приведення до точки О1 змінюється на величину моменту головного вектора відносно нового центра приведення О1.

Враховуючи рівняння (5.5) і (5.7) отримаємо вирази:

,

(5.12)

З виразу (5.12) випливає рівність моментів результуючої пари і головного моменту системи сил відносно нового центра зведення О1, а також справедливість приведених на рис. 5.7 системних перетворень.


Рис. 5.7

Однак, на практиці виявилось, що більш зручним у використанні є рівняння (5.11), яке стосується головного моменту системи сил.

Розглянемо далі інші властивості головного вектора і головного моменту системи сил, які мають суттєве теоретичне і практичне значення.

Важливою властивістю головних вектора і моменту системи сил є незалежність їх скалярного добутку від положення точки приведення на тілі.

Дійсно, для будь-якої точки приведення О1 отримаємо:

. (5.13)

За визначенням вектор і вектор (рис. 5.7) є перпендикулярними. Тому формула (5.13) приводиться, враховуючи що , до виду

. (5.14)

Вираз (5.14), в результаті незалежності головного вектора системи сил від зміни полюса приведення, перетворюється у рівність

, (5.15)

яка і доводить зазначену властивість.

У механіці цю властивість скалярного добутку головного вектора і головного моменту системи сил визначають як другий статичний інваріант (перша форма).

Розглянемо другу форму другого статичного інваріанта системи діючих на тіло сил, які зведено в центрі О до головного вектора і головного моменту .

З векторної алгебри відомо, що за величиною скалярний добуток двох векторів може бути визначеним через проекцію одного з векторів добутку на напрямок іншого:

, (5.16)

де - проекція вектора на напрямок головного вектора .

Тоді з формул (5.15), (5.16) випливає вираз

,

який, з урахуванням рівності першого статичного інваріанта, перетворюється до вигляду

. (5.17)

Співвідношення (5.17) виявляє, що проекція головного моменту систем сил на напрямок її головного вектора не залежить від положення точки приведення. У механіці цю властивість визначають як другий статичний інваріант (друга форма).


^ 5.4. Окремі випадки приведення просторової системи сил


Відповідно до теореми Пуансо довільна система сил у просторі в загальному випадку зводиться у центрі О до двох силових факторів: сили, яка дорівнює головному вектору , і пари сил з моментом, який дорівнює головному моменту вихідної системи сил. Однак, на практиці між параметрами (величинами і взаємним напрямком) векторів і виникають різні співвідношення, що призводять до окремих випадків приведення довільної системи сил.

5.4.1. Приведення системи сил до пари сил з моментом (рис. 5.8). У цьому випадку в центрі приведення О головний вектор системи , а головний момент є перпендикулярним до пл. Е дії пари сил .

5.4.2. Приведення до рівнодійної у центрі О. Тут (рис. 5.9) виконується наступне: головний момент системи сил =0; головний вектор і належить пл. Е; система діючих на тіло сил відноситься до збіжної у точці О.





Рис. 5.8 Рис. 5.9


5.4.3. Зрівноважена (нульова) система сил. У цьому випадку в центрі приведення О (рис. 5.10, 5.11) отримаємо: головний вектор і головний момент ; вихідна система сил у будь-якій точці О тіла зводиться до еквівалентної нулю зрівноваженої системи; многокутники сил вихідної системи і многокутники векторів моментів сил відносно довільної точки О тіла є замкненими.


Рис. 5.10 Рис. 5.11

5.4.4. Приведення системи сил до головного вектора і головного моменту , коли . Тут мають місце, залежно від взаємної орієнтації векторів і , три окремі випадки.

5.4.4.1. Приведення до динами, коли вектори і не є перпендикулярними, тобто (рис. 5.4) кут і скалярний добуток векторів .

Розкладемо головний момент на дві ортогональні складові , одна з яких спрямована вздовж головного вектора .




Рис. 5.12 Рис. 5.13




Рис. 5.14 Рис. 5.15


Представимо момент (закреслено на рис. 5.13) у вигляді пари сил , в якій плече , а сила прикладена в точці О1.

У цьому випадку буде виконуватись умова еквівалентності: , тому що сили і за визначенням складають двійку сил, тобто .

Представимо далі вектор у вигляді моменту пари сил і перенесемо його, як вільний вектор, з точки О в точку О1 прикладання сили (показано на рис. 5.14 штриховою стрілкою).

У результаті початкова система сил перетворилась в центрі О1 в систему силових факторів . Тут сила дорівнює головному вектору за визначенням, а момент пари сил за величиною - проекції головного моменту на напрямок головного вектора (рис. 5.12) системи сил: . На рис. 5.15 момент для наочності показано одночасно у вигляді пари сил .

Сукупність діючих на тіло силових факторів у вигляді сили і пари сил , вектори яких колінеарні (лежать на одній прямій), називають динамою чи динамічним гвинтом. Лінія, яка проходить через центр приведення О1 вздовж даної прямої, називається віссю динами.

У просторі рівняння осі динами отримаємо з урахуванням умови паралельності векторів і (рис. 5.14):

(5.18)

де векторний добуток , - параметр гвинта (скаляр);

.

Враховуючи (5.18), отримаємо такі співвідношення між координатними складовими векторів , і :

, (5.19)

де х, у, z - координати точки О1 на осі динами.

Співвідношення (5.19) дозволяють отримати рівняння прямої лінії, осі динами, у формі

(5.20)

Отже, існує пряма з канонічним рівнянням (5.20) у проекціях, в будь-якій точці якої система діючих на тіло сил зводиться до динами.

Таким чином встановлено, що прикладена до тіла вихідна довільна система сил, якщо другий статичний інваріант першої форми не дорівнює нулю, тобто при (), зводиться у точці О1 до динами, яка є сукупністю двох силових факторів: сили і моменту пари сил , вектори яких колінеарні. При цьому здається, що за величиною момент пари динами у точці О1 буде найменшим (рис. 5.16), порівняно з моментами у будь-яких інших точках приведення Ок на осі Оу, тобто буде виконуватися співвідношення .

Цю важливу властивість динами використовують на практиці при вирішенні задач зрівноваження твердого тіла, а також відтворенні динамою заданого його руху за допомогою зовнішніх сил найменшої потужності.





Рис. 5.16


5.4.4.2. Приведення до схрещеної системи двох сил. Цей випадок має місце, коли вихідна система сил приводиться у центрі О до головного вектора і головного моменту (рис. 5.17), а кут між векторами, як і у випадку приведення до динами, задовольняє співвідношенню .

Представимо момент (закреслено на рис. 5.17) у вигляді пари сил з площиною дії Е і плечем (за величиною сила пари може бути будь-якою). Далі додамо за правилом паралелограма вектори і , отримавши силу .

Виконані перетворення призводять до наступної, еквівалентної до вихідної системи двох сил і : .





1   ...   6   7   8   9   10   11   12   13   ...   32

Схожі:

Теоретична механіка iconТеоретична механіка
Теоретична механіка: (Навчально-методичний посібник І завдання для контрольних робіт студентів факультету післядипломної освіти І...
Теоретична механіка iconМіністерство освіти І науки україни харківська національна академія міського господарства о.І. Рубаненко, В. П. Шпачук теоретична механіка. Спецкурс
Теоретична механіка. Спецкурс: Конспект лекцій (для студентів денної І заочної форм навчання бакалаврів за напрямом 060101 “Будівництво”)....
Теоретична механіка iconТеоретична механіка
На її законах базуються такі загально інженерні дисципліни, як опір матеріалів, будівельна механіка, прикладна механіка, деталі машин,...
Теоретична механіка iconТеоретична механіка

Теоретична механіка iconТа робоча програма навчальної дисципліни "теоретична механіка (спецкурс)"
На механіка (спецкурс)" (для слухачів другої вищої освіти заочної форми навчання за напрямом підготовки 0921– Будівництво спеціальності...
Теоретична механіка icon«теоретична механіка»
«Гідротехніка (водні ресурси)», 070101 «Транспортні технології (за видами транспорту)»)
Теоретична механіка iconВ. П. Шпачук, М. С. Золотов, О.І. Рубаненко, А. О. Гарбуз, В. О. Скляров теоретична механіка кінематика
Конспект лекцій для студентів денної І заочної форм навчання бакалаврів за напрямами 092100 “Будівництво”
Теоретична механіка iconТип модуля: обов’язковий Семестр: ІV обсяг модуля
Автомобілі”, “Вступ до фаху”, “Теорія машин І механізмів”, «Опір матеріалів», “Основи теплотехніки”, “Теоретична механіка”
Теоретична механіка iconНових надходжень до бібліотеки квітень
Федорченко, А. М. Теоретична фізика [Текст] : Підручник т. 1 : Класична механіка І електородинаміка / А. М. Федорченко. – У 2-х т....
Теоретична механіка iconМіністерство освіти І науки україни харківська національна академія міського господарства теоретична механіка статика
Конспект лекцій для студентів 1і 2 курсу денної І заочної форм навчання бакалаврів за напрямами 060101 “Будівництво”
Додайте кнопку на своєму сайті:
Документи


База даних захищена авторським правом ©zavantag.com 2000-2013
При копіюванні матеріалу обов'язкове зазначення активного посилання відкритою для індексації.
звернутися до адміністрації
Документи