Перелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Соціальна інформатика» icon

Перелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Соціальна інформатика»




Скачати 113.56 Kb.
НазваПерелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Соціальна інформатика»
Дата18.11.2012
Розмір113.56 Kb.
ТипДокументи

Перелік дисциплін, які виносяться

для вступу на освітньо-кваліфікаційний рівень магістра

зі спеціальності «Соціальна інформатика»


Математичний аналіз

Теорія ймовірностей та математична статистика

Алгебра та геометрія

Фінансова математика


Програми дисциплін


Математичний аналіз


Числові послідовності. Границі числових послідовностей

Множина дійсних чисел. Теорема Кантора про вкладені відрізки. Поняття числової послідовності та границі числової послідовності. Властивості збіжних послідовностей. Теорема про існування границі монотонної обмеженої послідовності. Теорема Больцано-Вейєрштрасса. Фундаментальні послідовності. Критерій Коші збіжності числової послідовності.

Границя функції в точці. Неперервні функції. Функції, неперервні на відрізку

Границя функції в точці. Критерій Коші існування границі функції в точці. Неперервність функції в точці. Властивості функцій, неперервних в точці. Перша та друга важливі границі. Функції, неперервні на відрізку. Теореми Вейєрштрасса про неперервні на відрізку функції. Теорема Коші про проміжні значення неперервної на відрізку функції. Рівномірна неперервність.

Диференціальне числення функції однієї змінної

Диференційовність функції однієї змінної. Геометрична інтерпретація похідної та диференціалу. Правила обчислення похідних. Похідна оберненої функції. Похідна і диференціал складеної функції. Похідні функцій, заданих неявно та параметрично. Теореми про середнє (Ферма, Ролля, Лагранжа) для диференційовних функцій. Знаходження границь невизначеностей за правилами Лопіталя. Похідні вищих порядків. Формула Тейлора. Застосування формули Тейлора до знаходження границь. Застосування методів диференціального числення до дослідження функцій.

Інтегральне числення функції однієї змінної

Означення і властивості невизначеного інтегралу. Основні методи інтегрування (заміна змінних, інтегрування частинами, інтегрування раціональних функцій). Означення інтегровної функції, критерій інтегровності.

Властивості визначеного інтегралу. Інтеграл зі змінною верхньою межею. Формула Ньютона-Лейбніца. Заміна змінної у визначеному інтегралі. Інтегрування частинами. Застосування визначеного інтегралу (довжина дуги кривої, площа криволінійної трапеції, об’єм та бічна площа поверхні тіла обертання).

Невластиві інтеграли першого та другого роду. Збіжність, абсолютна збіжність. Ознаки збіжності (ознака порівняння, ознаки Діріхле та Абеля). Головне значення невластивого інтегралу.

Теорія рядів

Означення числового ряду. Збіжність. Властивості збіжних числових рядів. Ознаки збіжності рядів з невід’ємними членами. Числові ряди з членами довільних знаків. Абсолютно та умовно збіжні ряди. Ознаки Абеля та Діріхле.

Збіжність та рівномірна збіжність функціональних послідовностей та рядів, ознаки рівномірної збіжності функціонального ряду. Рівномірна збіжність та неперервність. Почленне інтегрування та диференціювання рівномірно збіжних рядів та послідовностей. Степеневі ряди. Множина збіжності. Ряд Тейлора.

Диференціальне числення відображень

Означення диференційовного відображення та його похідної. Матриця Якобі диференційовного відображення. Диференціал відображення. Матриця Якобі складеної функції. Матриця Якобі оберненої функції. Теорема про неявну функцію. Диференційовність та частинні похідні. Теорема про рівність змішаних частинних похідних однакового порядку, що відрізняються лише порядком диференціювання. Похідні та диференціали вищих порядків. Формула Тейлора для функцій багатьох змінних.

Необхідна умова локального екстремуму. Достатня умова локального екстремуму. Умовний екстремум. Необхідна умова локального умовного екстремуму (метод множників Лагранжа). Достатня умова локального умовного екстремуму. Найбільше та найменше значення функції в замкненій області.

Інтегральне числення функцій багатьох змінних

Означення нижньої та верхньої міри Жордана. Означення множини, вимірної за Жорданом. Критерій вимірності. Означення кратного інтегралу Рімана. Властивості кратного інтегралу. Зведення кратного інтегралу до повторного. Теорема про заміну змінних у кратних інтегралах. Полярні, сферичні та циліндричні координати.

Властивості неперервно диференційовних відображень областей з ненульовим якобіаном. Геометричний зміст модуля якобіана. Геометричний зміст знаку якобіана при відображенні областей.

Криві в (еквівалентні параметричні зображення, орієнтація). Криволінійні інтеграли першого та другого роду, властивості. Теорема (формула) Гріна. Застосування формули Гріна до обчислення площ. Криволінійні інтеграли, що не залежать від вибору шляху інтегрування, їх властивості.

Параметричне зображення поверхні. Еквівалентні параметричні зображення. Дотична площина і нормаль до поверхні. Орієнтація поверхні. Поняття площі поверхні. Поверхневі інтеграли першого та другого роду. Заміна змінних у поверхневих інтегралах. Зведення поверхневих інтегралів до подвійних.

Теорія поля

Означення градієнта і похідної за напрямом. Означення дивергенції, ротора, циркуляції та потоку векторного поля. Означення потенціального та соленоїдного векторного поля. Теорема Остроградського Гаусса. Критерій соленоїдності векторного поля в об’ємно однозв’язній області. Теорема (формула) Стокса. Критерій потенціальності векторного поля.

Інтеграли, залежні від параметра

Означення збіжності та рівномірної збіжності інтегралів, залежних від параметра. Теорема про неперервність інтегралів, залежних від параметра. Теорема про диференціювання інтегралів, залежних від параметра. Теорема про інтегрування інтегралів, залежних від параметра.

Ряди Фур’є. Інтеграл та перетворення Фур’є

Тригонометрична система, її властивості. Тригонометричний ряд Фур’є. Показникова форма ряду Фур’є. Ортонормовані системи. Нерівність Бесселя. Рівність Парсеваля. Теорема Рімана Лебега. Достатні умови поточкової збіжності рядів Фур’є. Почленне інтегрування рядів Фур’є.

Означення інтегралу Фур’є. Інтегральна формула Фур’є в показниковій формі. Пряме та обернене перетворення Фур’є. Властивості перетворення Фур’є. Перетворення Фур’є згортки.


Література

1. Дороговцев А. Я. Математичний аналіз, ч.1, 2. / А. Я. Дороговцев – К. : Либідь, 1993, 1994.

2. Тер-Крикоров A. M. Курс математического анализа: Учеб. пособие для вузов. - 3-е изд., исправл. / A. M. Тер-Крикоров, М. И. Шабунин – М. : Физматлит, 2001. – 672 с.

3. Ковальчук Б. Основи математичного аналізу, ч.1, 2. / Б. Ковальчук, Й. Шіпка. – Львів : Видавничий центр ЛНУ ім. І. Франка, 2010.


Теорія ймовірностей та математична статистика


Випадкові події

Відносна частота випадкової події, ймовірність в дискретному просторі елементарних подій. Класичне означення ймовірності. Повна група подій. Геометрична ймовірність. Сумісні і несумісні події. Теореми додавання сумісних і несумісних подій. Залежні і незалежні події. Теореми множення залежних і незалежних подій. Формула повної ймовірності. Формула Байєса.

Випадкові величини

Загальне поняття випадкової величини та її функції розподілу. Поняття і розподіл дискретних випадкових величин. Основні дискретні розподіли та їх властивості (біноміальний, геометричний та пуассонівський розподіли). Абсолютно неперервні розподіли. Щільність розподілу і її властивості. Основні абсолютно неперервні розподіли та їх властивості (нормальний, показниковий, рівномірний розподіли). Розподіл дискретного випадкового вектора. Щільність розподілу абсолютно неперервного випадкового вектора. Рівномірний і нормальний розподіли на площині. Умовний розподіл. Розподіл функцій від випадкових величин. Розподіл суми (різниці), частки і добутку двох випадкових величин. Поняття і властивості математичного сподівання дискретної випадкової величини. Математичне сподівання біноміального, геометричного та пуассонівського розподілів. Поняття і властивості дисперсії дискретної випадкової величини. Дисперсії біноміального, геометричного та пуассонівського розподілів. Математичне сподівання довільної і абсолютно неперервної випадкових величин. Математичне сподівання і дисперсія рівномірного, показникового та нормального розподілів. Моменти вищих порядків. Поняття і властивості умовного математичного сподівання. Поняття і властивості коефіцієнта кореляції.

Граничні теореми теорії ймовірностей

Нерівність Чебишова. Закон великих чисел. Теореми Хінчина (без доведення), Чебишова, Бернуллі, Маркова. Локальна теорема Лапласа. Інтегральна теорема Лапласа. Поняття і властивості характеристичних функцій випадкових величин. Теореми Бохнера Хінчина, Марцинкевича, Пойа (без доведення). Характеристичні функції основних розподілів. Поняття і властивості твірних функцій випадкових величин. Центральна гранична теорема для однаково розподілених випадкових величин. Граничні теореми в схемі Бернуллі.

Елементи вибіркової теорії

Предмет та основні задачі математичної статистики. Ймовірнісно-статистична модель. Вибірки. Емпірична функція розподілу. Варіаційний ряд і статистичний ряд розподілу вибірки. Гістограма і полігон вибірки. Граничні теореми для емпіричної функції розподілу (без доведення). Теоретичні та вибіркові моменти. Збіжність за ймовірністю та асимптотична нормальність вибіркових моментів. Розподіл порядкових статистик.

Оцінювання невідомих параметрів розподілу. Точкові оцінки невідомих параметрів розподілу

Незміщені та умотивовані оцінки. Поняття і властивості оптимальних оцінок. Поняття функції правдоподібності, внеску вибірки, функції інформації. Нерівність Рао-Крамера. Ефективні оцінки. Експоненціальні моделі. Достатні статистики. Критерій факторизації. Теорема Рао-Блекуела-Колмогорова. Повні достатні статистики і рівняння незміщеності. Метод максимальної правдоподібності. Метод моментів. Інтервальне оцінювання невідомих параметрів розподілу. Розподіл деяких функцій від нормально розподілених випадкових величин. Інтервальні оцінки та методи їх побудови. Інтервали надійності для невідомих параметрів нормального розподілу. Асимптотичний інтервал надійності для оцінки невідомої ймовірності події.

Перевірка статистичних гіпотез

Загальні поняття про статистичні гіпотези та статистичні критерії. Основні принципи побудови критеріїв узгодженості. Критерії узгодженості про вигляд функції розподілу Колмогорова, Мізеса. Критерії узгодженості про вигляд функції розподілу Пірсона. Критерій незалежності. Перевірка параметричних гіпотез. Критерій Неймана-Пірсона. Критерії значущості та інтервальне оцінювання.


Література

1. Пугачев В. С. Теория вероятностей и математическая статистика / В. С. Пугачев. – М. : Физ.мат.лит., 2002. – 410 с.

2. Гихман И. И. Теория вероятностей и математическая статистика / И. И. Гихман, А. В/ Скороход, М. И. Ядренко – К. : Вища шк., 1979. – 408 с.

3. Чистяков В. П. Курс теории вероятностей / В. П. Чистяков – М. : Наука, 1982. – 256 с.



Алгебра та геометрія


Матриці та визначники. Крамерові системи рівнянь

Дії над матрицями. Перестановки та підстановки. Означення та властивості визначника -го порядку. Розклад визначника за елементами рядка. Визначник добутку матриць. Вироджені та невироджені матриці. Обернена матриця. Правило Крамера. Метод Гауса. Матричний метод.

Векторна алгебра

Лінійні операції над векторами. Базис та координати. Проекція вектора на вісь. Поділ відрізка у заданому відношенні. Скалярний, векторний, мішаний добутки та їх властивості.

Прямі та площини

Основні типи рівнянь прямої на площині. Жмуток прямих. Рівняння площини. Зведення лінійного рівняння до нормального вигляду. Основні рівняння прямої у просторі. Відстань між мимобіжними прямими.


Криві та поверхні 2-го порядку

Канонічні рівняння еліпса, гіперболи, параболи. Ексцентриситет, директриси та дотичні. Лінійні перетворення системи координат на площині. Зведення загального рівняння 2-го порядку до канонічного вигляду. Поверхні обертання. Канонічні рівняння поверхонь 2-го порядку.


Многочлени

Алгебраїчна та тригонометрична форми комплексного числа. Операції над комплексними числами. Формула Муавра. Добування кореня. Первісні корені. Ділення з остачею. Найбільший спільний дільник. Алгоритм Евкліда. Теорема Безу. Схема Горнера. Кратні корені. Основна теорема алгебри. Формули Вієта. Многочлени з дійсними коефіцієнтами. Межі дійсних коренів. Теорема Штурма. Симетричні многочлени. Результант. Дискримінант.

Лінійні простори

Базис та координати. Вимірність. Лема про лінійні комбінації. Зв’язок між базисами. Лінійні підпростори. Лінійні оболонки та гіперплощини. Сума та перетин. Прямі суми. Ізоморфізм. Терема про ізоморфні лінійні простори. Евклідовий простір. Ортонормований базис. Ортогоналізація системи векторів. Матриця Грама. Ортогональне доповнення. Ортогональна проекція ветора на підпростір. Нерівності Коші-Буняковського та Мінковського. Унітарні простори. Ермітові матриці. Унітарні матриці.

Лінійні системи загального вигляду

Базисний мінор. Ранг матриці. Теорема Кронекера-Капеллі. Максимальна лінійно незалежна підсистема. Підпростір розв’язків однорідної системи. Загальний розв’язок однорідної системи. Лінійний многовид розв’язків неоднорідної системи. Метод найменших квадратів.

Лінійні перетворення

Матриці лінійного перетворення в різних базисах та їх зв’язок. Група лінійних перетворень. Ранг, образ, ядро та дефект. Власні значення та власні вектори. Спряжене лінійне перетворення. Самоспряжені лінійні перетворення. Ортогональні перетворення. Жорданова нормальна форма матриці лінійного перетворення.

Квадратичні форми

Спряжений простір. Взаємні базиси. Матриця білінійної форми. Квадратична форма, її ранг. Закон інерції. Полілінійні функції. Тензори.

Алгебраїчні структури

Група. Підгрупа. Нормальні дільники. Фактор-група. Гомоморфізм груп. Абельові групи. Кільце. Ідеал. Фактор-кільце. Гомоморфізм кілець. Класифікація полів. Розширення полів. Скінченні поля.


Література

1. Завало С. Т. Курс алгебри / С. Т. Завало. – К. : Вища шк., – 1988.

2. Воеводин В. В. Линейная алгебра / В. В. Воеводин. – М. : Наука, – 1974.

3. Кострикин А. И. Введение в алгебру / А. И. Кострикин. – М. : Наука, - 1977.


Фінансова математика


Просте нарахування відсотків

Поняття відсоткової ставки. Нарощення і дисконтування за простими відсотками. Зв’язок простої відсоткової та облікової ставки відсотків. Банківське дисконтування.

Застосування простого нарахування відсотків

Застосування простих ставок у фінансових розрахунках. Облік векселів. Принцип фінансової еквівалентності. Зміна умов контрактів, консолідація векселів. Врахування інфляції при простому нарахуванні.

Складне нарахування відсотків

Реінвестиція під прості відсотки. Нарощення і дисконтування за складними відсотками. Номінальна ставка. Ставка ефективності. Неперервні відсотки. Врахування інфляції при складному нарахуванні.

Еквівалентність фінансових розрахунків

Еквівалентність відсоткових ставок. Змінювані відсоткові ставки. Середні відсоткові ставки. Принцип стабільності ринку. Еквівалентність простих і складних відсотків.

Застосування складного нарахування відсотків

Застосування складних відсотків у фінансових розрахунках. Планування погашення довгострокової заборгованості. Кредитні операції. Зміна умов контрактів, консолідація платежів.

Розрахунок параметрів загальної ренти

Теорія рент. Типи рент. Дискретні ренти. Приведення рент різного типу до простої ренти. Розрахунок нарощеної та теперішньої вартості ренти. Розрахунок параметрів рент.

Застосування потоків платежів

Ренти з неперервним нарахуванням відсотків. Вічні ренти. Застосування теорії рент в кредитно-фінансових операціях. Консолідація та конверсія фінансових рент.

Цінні папери

Ринок цінних паперів (загальні відомості). Первинний і вторинний ринок цінних паперів. Облігації. Визначення вартості облігації. Акції. Визначення цін акцій. Опціони, страхові аннуітети. Ф’ючерсні контракти.

Основи інвестицій

Характеристики ефективності інвестицій. Планування інвестиційного процесу. Визначення ринкового портфеля. Оптимізація портфеля цінних паперів.


Література

1. Бондарев Б. В. Финансовая математика. учеб. пособ. / Б. В. Бондарев, И. Л. Шурко. – Донецк : Кассиопея, 1999. – 164 с.

2. Бугір М. К. Математика для економістів / . М. К. Бугір. – Тернопіль : Підручники та посібники. – 1998. – 192 с.

3. Бугрій М. І. Основи фінансово-кредитного аналізу / М. І. Бугрій. – Львів : Видавничий центр ЛНУ ім. І. Франка, 2006. – 375 с.

Схожі:

Перелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Соціальна інформатика» iconПерелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Мости і транспортні тунелі»
move to 0-21563268
Перелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Соціальна інформатика» iconПерелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Міське будівництво та господарство»
move to 0-21563265
Перелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Соціальна інформатика» iconПерелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Промислове і цивільне будівництво»
move to 0-21563264
Перелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Соціальна інформатика» iconПерелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Автомобільні дороги і аеродроми»
move to 0-21563267
Перелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Соціальна інформатика» iconПерелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Технологія будівельних конструкцій, виробів і матеріалів»
move to 0-21563266
Перелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Соціальна інформатика» iconПерелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Прикладна фізика»
Незгасаючі та згасаючі гармонічні коливання з одним та багатьма ступенями вільності
Перелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Соціальна інформатика» iconПерелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Соціальна робота»
Визначення соціальної роботи. Природа та функції соціальної роботи. Суміжні науки І суміжні професії. Визначальні характеристики...
Перелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Соціальна інформатика» iconПерелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Соціальна робота»
Визначення соціальної роботи. Природа та функції соціальної роботи. Суміжні науки І суміжні професії. Визначальні характеристики...
Перелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Соціальна інформатика» iconПерелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Прикладна лінгвістика»
Односкладні речення. Main syntactic sentence structures. Secondary predication constructions in English
Перелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Соціальна інформатика» iconПерелік дисциплін, які виносяться для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Прикладна лінгвістика»
Односкладні речення. Main syntactic sentence structures. Secondary predication constructions in English
Додайте кнопку на своєму сайті:
Документи


База даних захищена авторським правом ©zavantag.com 2000-2013
При копіюванні матеріалу обов'язкове зазначення активного посилання відкритою для індексації.
звернутися до адміністрації
Документи